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Probabilistic Finite Element Methods

Probabilistic finite element methods (PFEM), synthesizing the power

of finite element methods with second-moment techniques, are formulated

for various classes of problems in structural and solid mechanics.

Time-invariant random materials, geometric properties and loads are

incorporated in terms of their fundamental statistics viz. second-

moments. Analogous to the discretization of the displacement field in

finite element methods, the random fields are also discretized.

Preserving the conceptual simplicity, the response moments are

calculated with minimal computations. By incorporating certain

computational techniques, these methods are shown to be capable of

handling large systems with many sources of uncertainties.

By construction, these methods are applicable when the scale of

randomness is not very large and when the probabilistic density

functions have decaying tails. The accuracy and efficiency of these

methods, along b_th their limitations, are demonstrated by various

applications. Results obtained are compared with those of Monte Carlo

simulation and it is shown that good accuracy can be obtained for both

linear and nonlinear problems. The methods are amenable to implementa-

tion in deterministic FEM based computer codes.
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CHAPTER I

INTRODUCTION

Traditionally, engineering analysis has been based on deterministic

models with well-defined parameters. However, it is increasingly being

recognized that uncertainties are often associated with parameters such

as material and geometric properties, forces and boundary conditions and

that these should be adequately modeled. An example is the degradation

of material properties with time as a result of fatigue, wear and long-

term creep; such changes in material properties can be treated as

uncertainties. In general, the random uncertainties which are included

in a stochastic process can be classified into three major categories:

(i) physical uncertainty, (2) statistical uncertainty and (3)

uncertainty in the model. A detailed discussion of these topics can be

found in, for example, Refs. [1-4]. Theoretically, these uncertainties

can be modeled as random variables or random fields governed by joint

probability density or distribution functions. In practice, the exact

Joint probability density functions are not always available; it is more

likely that only the first few moments such as the mean and covariance

are known.

Uncertainty analysis in structural mechanics has concentrated on

problems of an almost totally stochastic nature. Within this setting,

even a single degree of freedom system with nonlinearities poses a

formidable challenge and has not been solved satisfactorily. The most

commonly employed solution technique is Monte Carlo simulation (see e.g.

[3]). In general, these simulation procedures are computationally

!
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expensive, even though they are easily applicable to both linear and

nonlinear systems. For linear systems, nonstatistical methods such as

"second-moment analysis', are available [2]. A related second order

perturbation technique applied to a special class of linear structural

vibrations is discussed in [5]. The emphasis is on the modal decoupling

of the equations of motion with uncertain damping. The "second-moment

analysis" has also been extended in [6] to define the mean and variance

of vector functions. This formulation is mathematically elegant and

Kronecker algebra and matrix calculus are employed. While this

formulation has also been extended in [7] to linear stochastic systems

with colored multiplicatlve noise, the direct application of this

technique to nonlinear structural dynamics is not feasible, because in

most nonlinear structural analysis, concern lles more with deviations in

loads from a deterministic path and in uncertainties in material

properties to which a value can be assigned rather than completely

stochastic loads or systems.

The research reported here can be subdivided into two parts: (I)

development of a variational principle to embed the probabilistic

character of the constitutive properties and loads (which are part of

the boundary conditions and body forces) and to obtain the corresponding

probabilistic character of the nodal forces; (2) the determination of

the probabilistic distribution of the response (displacement and stress)

from the probabillstic description of the nodal forces.

The main thrust of this research has been to integrate second-

moment based techniques with finite element methods in a method called

I
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probabilistic finite elements (PFEM); finite elements are currently the

most versatile tools of analysis in large-scale structural and solid

mechanics. Through this synthesis, we have developed versatile and

efficient techniques for probabilistic analysis. The investigation is

restricted to time invariant uncertainties which may be present as

discrete random variables or random fields in material, geometric

properties and/or forces. These methods are applicable when the

uncertainties are not very large and when the probabilistic density

functions or histograms have decaying tails. The most appealing

features about PFEM are its conceptual simplicity, ease of computer

implementation and the flexibility to accommodate efficient numerical

techniques at every stage of the methodology.

PFEM has been formulated for various classes of problems in

structural and solid mechanics. In the next chapter, methods are

developed for nonlinear structural dynamics with discrete random

variables. In Chapter 3, random fields are modeled, essentially by

discretization. The encumberances of correlated random variables are

avoided by an eigenvalue transformation to the space of uncorrelated

random variables. In Chapter 4, these methods are derived from

variational principles. The linear formulation is obtained from the

potential energy variational principle and the nonlinear counterpart is

derived from the principle of virtual work with appropriate stress and

strain measures to account for the large deformation. In Chapter 5,

numerical applications in elastoplastic mechanics are studied in detail,

along with improved computational techniques. The summary and

conclusions are presented in Chapter 6.
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CHAPTER 2

PROBABILISTIC FINITE ELE_LENTS FOR NONLINEAR STRUCTURAL DYNAMICS

2.1 Introduction

It is i_porcant to be able to treat the effects of uncertainties in

a reasonably economical manner; standard Monte Carlo procedures are

simply too expensive. Furthermore, the methods should be designed so

that they can be incorporated into widely used finite element programs

in a natural and concise manner. Thus, the approach should be

integrable with the elemental discretization and nodal assembly

procedures that characterize finite element theory and software

implementation.

In the next section, the formulation of the probabilistic finite

element method (PFEM) is presented. The method is applicable in

structural dynamics with discrete random variables with or without

correlation. In Section 2.3, the computational aspects of PFEM are

discussed. In Section 2.4, the analysis of a two degree of freedom

spring-mass probabilistic system is then given. Results are also

presented for a ten-bar probabilistic system with nonlinearities. The

proposed PFEM method is compared to (I) Monte Carlo simulations (MCS)

and (2) Hermlte-Gauss Quadrature (HGQ) schemes. All these methods are

schematically depicted in Fig. I, highlighting the major computational

steps. In Section 2.5, the relative performance of the PFEM as compared

to the other t_ methods is discussed. The reason for the limitation of

each solution technique is also presented.

I
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2.2 Formulation of the Probabilistlc Finite Element Method (PFEM)

5

We consider the structural system to be governed by the following

system of nonlinear algebraic equations which arises from a finite

element discretization:

M ~'d + f(b, d, _) = F(t) (2.2.1)

where M, !' ~d and ~F are the generalized mass, internal force,

displacement and external force respectively; and a superscript dot

represents material time (t) derivative. While the internal and

external nodal forces are obtained from one variational statement, they

are segregated for convenience. The probabilistic effects are described

through the q-dimensional random vector b; this can include the

probabilistic distributions of the material properties; the mass M is
~

assumed to be deterministic. All these probabilistic distributions, as

reflected in the variance of the material properties, the composite load

spectra, etc. are represented by the generalized variance vector,

Vat(b). We shall denote the expected value operator by E[ ] and use

second order expansions so E[ ] is given by

E[_(b)] = _ + 2 _b i abj C°v(bi' bj) (2.2.2)

where _ is a vector function of the random variables. The superposed

bar denotes "at the mean value of b" and the symbol Cov represents the
~

covariance; summations on i and j from I to q are assumed. If bi is

I
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uncorrelated to b. for i _ j, then

3

I Cov(bi, bj) = 0 for i # j

I and

I
Cov(b i, b i) - Var(bi)

no sum on i

I
I

I

Applylng the expected value operator to Eq. (2.2.1) yields

Employing Eq. (2.2.2) and the chain rules:

!

I
I

I

I

I

_2T
I ~

+

2 abiab j
Cov(bi, bj)

a_ aT a[ aT

+ abj + abi abj '} C°v(bi' bj)

I

I

,6

(2.2.3a)

(2.2.3b)

(2.2.4)

(2.2.5a)

(2.2.5b)

I
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and

7

z[z(=)]-E(t) (2.2.5c)

where _ and d have been replaced by v and a respectively. The C and K

matrices are the damping and stiffness matrices, respectively. They are

_f

C "--
_V

(2.2.6a)

and

_f

K s_
~ _d

(2.2.6b)

In the case of a linear structure, f is given by

f - C v + K d (2.2.6c)

For simplicity, let us assume that Eqs. (2.2.3) holds. This

assumption is quite suitable for finite element models which are built

up from discrete structural elements, such as bars and beams. Using

this simplification and applying perturbation techniques on Eqs.

(2.2.5), Eq. (2.2.4) can be shown to yield

(2.2.7a)

!
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and

I M Aa + C Av + K Ad = AF

8

I where

I i _zT

2 Var(bj )}
+ 2 abj

I

(2.2.7b)

I _-_- _ _
j-i ab--_. Var(bj )

3

I

(2.2.8a)

(2.2.8b)

-- I q a_vv

I Av " _- -b_'Var(bj)_j1 a (2.2.8c)

I and

A _ " _ j'l -b_'8Var(bj) (2.2.8d)

!
Once Aa, A_ and Ad are obtained by solving Eq. (2.2.7b), the second-

I order means are

(2.2.9a)II _.[]] - E[_]. ] +

I
I

I
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[_J Cz] - -E ,, E " v + Av (2.2.9b)

I and

(2.2.9c)

I If one is interested in the deviations in response from a

I
deterministic path due to the uncertainties in material properties to

which a value can be assigned, the number of time integrations

I (simulations) reduces to only two. These two simulations are

I m u

M a + f - F (2.2.10a)

I
and

I

I
I
I

m m

M Aa + C Av + K Ad - AF (2.2.10b)

where

Aa m

l

q _a

I ~ Ahj
J,,l

(2.2.10c)

I

I
AV m

q _v

_. ~ Abj
j=l _j

(2.2.10d)

I

I

I
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I
q _

I _ i j_=lq _b_._Abj,

I0

(2.2. fOe)

(2.2. lOf)

I

I

and Abj is equal to the preassigned value of bj. It is also necessary

to obtain the sensitivity vectors, i.e. _( )/_bi; see Section 3.

Finally, once the means and the sensitivity vectors are determined,

I the variance vectors can be computed easily by the following first order

formulas

I

I

u i

q _a _a

Vat(a) = i,J-I_ (_-_i)C_bj) Cov(bl, bj) (2.2.11a)

I

I
I

I

I

I

m

q _v _v

Vat(v) = i,J=l_ [9-_i)C-_bj) Cov(bi, bj) (2.2.11b)

m

q _d _d

In the case of uncorrelated b's, the covariance matrix becomes a

diagonal matrix and the diagonal terms are denoted by

q ;}a

Var(a) = j-1[ C_-_-j) 2 Var(bj)
(2.2.12a)

I

I

m

q _v

VarC_)-- I CT_-.)2Var(bj)
j=t j

(2.2.12b)

I

I
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I
I

I
I

I
I

I
I
I

I
I
I

I

I
I
I

I

Var_,-_I_ 2Vat,b,,
j-1 j

Ii

(2.2.12c)

Similar procedures can also be developed for the probabilistlc

distributions of stresses. However, this direct approach can be very

expensive if the number of random variables is greater than the number

of requested probabilistic distributions of stresses. For this

situation, an alternative approach, termed an adjoint probabilistic

stress analysis, is developed. This is described in [12].

Remark 1 The uncertainties discussed here are described by discrete

random variables. Physical parameters, such as material properties, are

often continuous functions in space. When there are uncertainties

associated with these parameters, we have random fields. The

probabillstic distributions at any two points can be represented by a

"correlation function." One way to adapt the above procedures to

"random fields" is to first do a finite element discretization of the

correlation function and thus obtain the covariance matrix. Once this

matrix is obtained the PFEM method as developed here could be used with

minor modifications.

Remark 2 To the author's knowledge, Eqs. (2.2.7) through (2.2.12)

represent the first consistently derived second moment probabilistic

finite element method (PFEM) which can readily be adapted to existing

deterministic finite element computer programs. The second order

I
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terms Aa, A_ and Ad are computed directly from the second moment mean

Eq. (2.2.7b). Consequently Eqs. (2.2.9) are second order accurate and

Eqs. (2.2.11) are first order accurate.

Remark 3 The complete probability distributions are not available for

most random variables except perhaps the first two moments. Methods

such as MC$ or RC,Q usually require knowledge of probability density

functions. The PFEM method requires only the first two moments and is

therefore widely applicable.
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2.3 Computational Aspects of PFEM

The computing procedures essentially involve time integrations of

the various equations derived in the previous section. In general, the

sensitivity vectors can be obtained directly by integrating the

sensitivity equations in time. However, this is not possible for some

nonlinear systems. In such cases, the usual procedure is to calculate

the derivatives by finite differences [I]. Calculating the finite

difference derivatives increases the computation for a probabilistic

system. However, results obtained are excellent when compared to the

solutions obtained by other methods. The computing procedures for

linear and nonlinear systems are described separately below.

Linear Systems

For a linear system, Eqs. (2.2.7) become

-- _ F< >M a + C v + - t) (2.3.1a

The solutions of Eq. (2.2.7a) and (2.2.7b) are obtained in sequence so

that the additional computation due to the latter is minimized. The

solution algorithms, such as implicit and/or explicit time integration,

used in Eq. (2.3.1a) can be applied directly to Eq. (2.3.1b) with the

formulation of only one additional vector function AF.

I



I

I
I

I
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If we examine Eq. (2.2.8a) closely,_ it_ can be shown that AF can be
av ad

--N _computed element-wise once _, d, and are given. In addition,

the corresponding varlation of the elemental nodal forces can then be

assembled into a description of the probabilistic distribution of the

I

I

elemental nodal forces for the complete finite element model.

It can be easily shown that the governing equations for the

sensitivity vectors are obtained by differentiating Eq. (2.2.1) with

I respect to bj. They are

(2.3.2a)

I

I

I

where

m I w m

bj _bj

or

d,_ = conscant

(2.3.2b)

I

I
I

a_ a_ a_
(2.3.2c)

From Eqs. (2.3.1a-b) and (2.3.2a); it can be seen that the whole

procedure uses the same effective stiffness matrix so only one matrix

I
I

I

needs to be triangulated.

To evaluate the mean and variance from Eqs. (2.2.9) and (2.2.12),

the total number of time integrations required is q + 2. These are:

one integration to evaluate the displacement, velocity and acceleration

I

I
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I
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I

I

I
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I

I

I
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at the mean value of b (Eq. 2.3.10a); 'q' integrations to evaluate the

sensitivity vectors (Eq. 3.2a); and one more integration to evaluate the

second order variations (Eq. 2.3.1b). The computational steps involved

in PFEM are shown in Fig. 2. Notice that all time integrations employ

the same effective stiffness matrix; parallel computation procedures

could be employed, thereby increasing the efficiency tremendously.

S_stems _rlth Material and Geometrical Nonlinearities

As in the linear case, the displacement, velocity and acceleration,

at the mean value of b is obtained by integrating Eq. (2.2.7a). l_e

relative merits between implicit and explicit time integrations are

considered here for a probabilistic nonlinear system.

By total differentiation of Eq. (2.2.10a) with respect to Bj, i.e.

d/dbj, we have:

d'_ d_"
.%. _._

"N÷_-0 (2.3.3a)

and

d_ d2T
M--+_" 0 (2.3.3b)

Equations (2.2.7a) and (2.3.3a) can be written as

m

(2.3.4a)

I



I

I
I-

I

and

_"_+_ _--T"-_ _' _'+_
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(2.3.4b)

m

I

I

where fn+l and K are the internal force vector and the "tangent

stiffness _atrix", respectively, evaluated at _, _u+l and tn+ 1.

Equations (2,3.4a) and (2.3.4b) can be solved by the implicit Newmark-B

algorithm [10]. The "mean value" equation (2.3.4a) can be solved by

Newton-Eaphson iteration

I

I

I

. v+l

where the residual vector is given by

(2.3.5a)

(2.3.5b)

and the effective stiffness matrix is

,,g = {M + BAt 2 v (2.3.5c)

I

I
The symbol v represents the equilibrium iteration counter at time step

" . v+l
n+l and iterations are repeated until Aan+l approaches zero.

Similarly, the first order sensitivity equation (2.3.4b) can be

I written as

I

I

I



I

I
I

I
I

I
I

I
I
Il-

l

I
I

I
l

I
I
I

m

--, 8dn+ 1
K
•-. 8b.

J

= -BAt

u

2 _£n+____i_n+1 !7
8bj " + M 8b. (2.3.6a)J

where

(2.3.6b)

It is observed here that the effective stiffness matrix K is identical

in both Eq. (2.3.5a) and Eq. (2.3.6a). Since the triangulated K is

_n+l ~

given during the iteration procedures, 8bj can be obtained simply by

forward reductions and back substitutions; therefore, the number of time

integrations is still q + 2.

The main advantage of employing implicit time integration is its

unconditional stability. Therefore, the above methods are best suited

for structural dynamics problems dominated by low frequency response.

For impulsive and short duratiou transient problems, Eq. (2.2.7a),

(2.3.3a) and (2.3.3b) can alternatively be solved by explicit

integrations. Since _(b, d) is nonlinear, the sensitivity vectors can

be obtained by central-differences. Equations (2.3.3a) and (2.3.3b) are

approximated by

+ f+a -a- -f-

C~2Ab. ) + C _ = o
J 2Abj ~

(2.3.7a)

and

+ -- _ f+a - 2a + a - 2_+ f-

(~ _b2 ') + C" _b2 ,) .. o
J J

(2.3.7b)

I
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i

i

where

+
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(2.3.7c)

m (2.3.7d)

m and

I
I + /k , (2.3.7e)

I _-I_(___)j, _->

m

m_

m

d+ and d- are similarly defined and Abj is defined by

Abj = (0, O, ..., _bj, O, ..., O) T

(2.3.7f)

(2.3.7g)

I
I
m

where T denotes the transpose. With this computational procedure, the

total number of time integrations would still be q + 2. However, the

number of internal force calculations would be 2q + I. These are: one

integration for the mean Eq. (2.2.7a) and 2q integrations with finite

differencing for Eq. (2.3.7a) and Eq. (2.3.7b). Apart from purely

m

m

implicit or purely explicit algorithms, mixed time implicit-explicit

algorithms [4] could also be employed so that the attributes of each of

the algorithms can be achieved.

I

m

m
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2.4 Numerical Examples

I Example I: A Two-De_ree-of-Freedom Sprin_-Rass System.

I The performance of PFEM, the new method developed here, is

evaluated via a two-degree-of-freedom spring-mass system. The mean is

I second order accurate and the variance is first order accurate in this

example. The computed results are compared with those obtained

I employing (I) Monte Carlo Simulation (MCS) and (2) Hermite-Gauss

i Quadrature (BGQ) schemes. The two latter methods as implemented here

are reviewed in Appendix A.

I The problem statement is depicted in Fig. 3. A sinusoidal vector

forcing function is used:

!

! f °°FCt) =

L25.0 x 10 6 sin 2000t!

(2.4. t)

!

!

The random spring constants K I and K 2 are normally distributed with a

coefficient of variation (i.e. o/b) equal to 0.05. The mean spring

constants are 24 x 106 and 12 x 106 respectively. The deterministic

!

!

!

!

masses m I and m 2 are 0.372 and 0.248 respectively. A stiffness-

proportional damping of 3% is included. The probabillstic equations

derived earller are solved by the implicit Newmark-B method [3]. The

mean amplitude _I is depicted in Fig. 4, for all the three numerical

methods -- PFEM, HGQ and MCS. The PFEM solution compares very well with

the other two methods. For the variance of d I the PF_4 solution plotted

!

!
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in Fig. 5, seems to overshoot the variance at large times. The mean and

variance of d 2 are similarly compared and depicted in Figs. 6 and 7.

The maximum coefficient of variation of the displacements d I and d 2 are

found to 0.13 and 0.i0 respectively. The _3_ bounds for the

displacements d I and d2 are plotted in Figs. 8 and 9 respectively.

Example 2: A Ten-Bar Probabillstic System with Material and Geometrical
Nonlinearities.

The problem statement is depicted in Fig. I0. The load time

function, which is also shown in Fig. I0, is applied at node 3. This

particular load-tlme history is chosen such that only four of the ten

bars, elements I, 3, 7 and 8, will yield. Therefore the probabilistic

model can be simplified by choosing the yield stresses of these four

elements as the normal random variables which have the major impact on

the response. The coefficient of variation is 0.05. Since the other

six elements do not come close to yield, they are considered

deterministic variables. With this approach, instead of 59049 analyses,

only 81 analyses are required for the Hermite Gauss Quadrature method.

The Justification for this drastic simplification is explained in detail

in Appendix A.

For the PFEM method, the finite difference derivatives are

evaluated with an interval Abj equal to 0.05 bj and the equations are

solved by explicit time integration. The mean is second-order accurate

whereas the variance is flrst-order accurate. The Monte Carlo

Simulation results are obtained with 400 simulations.

The probabilistlc displacement and stress solutions at selected

I
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locations are given in Figs. Ii through 14. The maximum coefficient of

variation of the displacement of node 1 is found to be 0.13 and that of

the stress in element i is 0.ii. For this example, the three methods

(PFEM, HGQ and MCS) have been employed and they all compare quite well.

The bounds of the displacement and stress can be estimated based on

the Chebyschev inequallty

I
P(l x - _ I • no) < _ , n > 0 (2.4.2)

n

where B = E(x) and a2 = Var(x). The e3o bounds (i.e., n = 3) for the

displacement and stress are plotted in Figs. 15 and 16, and the

solutions can be expected to be within these bounds with 89% confidence

level.
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2.5 Comparisons Among the Three Methods and Conclusions

Based on these numerical studies, we have drawn the following

tentative conclusions:

I) Although all three methods agree very well and are evidently

comparable in accuracy, PFEM is the most efficient solution procedure

for small to medium size problems. The relative computational

efficiency of the three methods is summarized in Figure 17.

Relative Computational Efficiency of Three Probabilistic Methods.

PFEM HGQ MCS

2 bar I 8 400

Structure

I0 bar I 4 60

Structure

Figure 17

The number of time integrations required for a general structure

with q random variables can be summarized as follows:

i)

ll)

ill)

iv)

PFEM with partial derivatives evaluated directly: q + 2

PFEM with partial derivatives evaluated by finite difference:

+I

HGQ with three-point quadrature

MCS with simple Monte Carlo Simulation of sample size N

3

N

22
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2) Although PFEM is expected to be most accurate when the variances are

small, it performs quite well even when the response shows a large

coefficient of variation (e.g., 0.13 for the displacement at Node I in

the ten-bar structure). This could be attributed partly to the nature

of the probabillstlc distribution. For most distributions, values of

response far- away from the mean are less likely to be found than those

near the mean. Hence second moment analysis about the mean turns out to

be quite accurate.

3) The three methods are applicable to linear and nonlinear systems.

In linear systems the partial derivatives can be obtained directly. In

nonlinear system the brute force method is to obtain these derivatives

by finite differences. We are currently investigating ways to compute

these derivatives efficiently. Howeverj the methods are problem

dependent.

4) A mlnor drawback of PFEMis that its accuracy deteriorates for large

times even with structural damping. An explanation is given in Appendix

B. We are currently investigating several ways of improving this.

5) PFEM can be easily incorporated into widely used finite element

programs.

6) A PFEM analysis can be obtained with q + 2 simulations if Cov(bi,

bj) _ 0 for i _ j. For this purpose the bi must be transformed into
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another sec of random variables cj through an eigenproblem such

that Cov(ci, cj) = 0 for i _ J and in most cases only a few modes are

sufficient [13].

7) Currently the PFEM is being extended to the transient analysis of

nonllnear continua, The details of the method can be found in [5].

Since this method involves only matrix and vector assembly it can

be incorporated in a natural and concise manner in general purpose

finite element programs.
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CHAPTER 3

RANDOM FIELD FINITE ELEMENTS

3.1 Introduction

At the present time, probabilistic methods in mechanics, for

problems involving time-independent uncertainties, can be broadly

classified into two major categories: (I) methods using a statistical

approach and (2) methods using a non-statistical approach. The

literature in these areas is quite considerable and so only a few sample

references are indicated below.

Simulation, involving sampling and estimation, is the most

prevalent statistical approach. Direct Monte Carlo simulation,

stratified sampling and Latin Hypercube sampling are some of the

frequently employed simulation techniques. A comparative discussion of

these techniques can be found in, for example, Refs. [1,2,3,6]. These

techniques, however, have their limitations. Transformations of the

distributions are necessary before simulation can be done [4,5,8,9].

This implies, of course, that the multivariate distribution function

needs to be known for simulation. The topic of transformation

techniques is still an area of current research. Furthermore, since the

aqcuracy of sampling techniques depends on the sample size, in

accordance with the "Weak Law of Large Numbers" [4,11], simulations can

become prohibitively expensive; hence the interest in non-statistical

methods.

Non-statistical approaches include numerical integration

[i0,15,16], second-moment analysis [4,5,7,9,14-17], and stochastic

41
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finite element methods [Ii-13,15,16]. Particularly, second-moment

techniques have proven to be accurate and efficient in structural

mechanics. A major advantage of these techniques is that the

multivariate distribution function need not be known but only the first

two moments. An inherent lim/tation of second moment analysis is that

the uncertainties cannot be too large, i.e., variances of the random

variables cannot be large when compared with their mean values.

Typically, the maximum coefficient of variation is around 10% although

it has been shown that it could be as high as 20% for acceptable results

to be obtained [5,14].

Linear problems in structural mechanics with uncertain parameters

have been solved by second-moment analysls [11-13]. However, similar

solution techniques for nonlinear problems in structural dynamics are,

to the authors' knowledge, nonexistent. Recently, the authors have

developed probabilistic finite element methods for nonlinear structural

dynamics [15,16]. The methods are applicable to correlated and

uncorrelated discrete random variables, though they are limited to

discrete structures such as sprlng-mass systems and nonllnear truss

structures.

The herein proposed method is applicable to nonlinear structural

dynamics problems with random fields -- both homogeneous and

inhomogeneous. In the next section, the formulation of the

prohabillstic finite element methods for linear continua is outlined.

In Section 3.3, the procedures for the transformation of the full

covarlance matrix to a diagonal matrix are discussed. In Section 3.4+

I
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the computational procedures using the transformed random variables are

given. The PFEM, as applied to continua with material and geometrical

nonlinearities, is formulated in Section 3.5. Applications to a one-

dimensional elastic/plastic wave propagation problem and a two-

dimensional plane-stress beam bending problem are described in Section

3.6. The results and conclusions are presented in Section 3.7.
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3.2 Probabilistlc Finite Element _thods (PFEM) for Linear Continua

The linear finite element equations are:

K d - F (3.2.1)

where the stiffness matrix is

(3.2.2)

The transpose is designated by a superscript "T"; the generalized

gradient matrix, material response matrix, nodal displacement vector and

nodal force vector are denoted by B(_), D(_,b), d(b) and [(b),

respectively; x are the spatial coordinates; _ is the domain and b(x) is

a random function. In this formulationp b(x) can be a random material

property or a random load.

The basic idea of the "Second Moment Analysis" in PFEM is to

expand, via Taylor Series, the d, D and F matrices about the mean value

of b and to retain only up to second order terms. Equations will then

be obtained for the mean values of the nodal displacements and the

covariances of the nodal displacements in terms of the derivatives of

the nodal displacements with respect to the random variables.

Similarly, the mean and covariance of the element stresses and strains

are obtained.

The random function b(_) is approximated using shape functions

Ni(5) by

I



I

I

I
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q

b(_) ffi Z Ni(_)b i (3.2.3a)
i=l

I where bi are the nodal values of b(x),_~_that is the values of b at X.
~l

i = I, ..., q.

I

I _(x) = E[b(x)]

I db I = cab I - ¢(b I - _i )

I

I

To derive the PFEM matrix equations, the following notation will be

used. For a given function g(b) and a small parameter ¢:

dbldb 2 = ¢2AblAb2

_(x) = gCx,_(x))

| -
gbl " _b I

mean value of b, i.e. the

expectation E[ ] of b(x)
~

first order variation of b 1

about _I

second order variation of b I and

b2 about _I andS2' respectively

value of g evaluated at b

partial derivative of g with

I respect to b I evaluated at82g

_blb 2 ffi mixed partial derivatives of g_bl_b 2

with respect to bI and b2I
I
I

evaluated at

The random function is defined by its expectation _(x), coefficient
~

of variation a and autocorrelation R(b(xi),b(xj)). The mean and

variance are approximated by the same shape functions as b, so

I
I

I

q

E[b(x)] = Z Ni(x)E[b i] (3.2.3b)
i=l

q

Var(b(x)) ffi Z

i,j=l
Ni(x)N j(x) Cov(b i ,bj ) (3.2.3c)

I

I
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The _atrices D, d and F are expanded about b via Taylor series:
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-- q -- 1 q --

D = D + ir=l Dbidb i + _ i,j=l_ Dbibj dbidb j 3.(2.4)

I q -- 1 q d_bibjd = _ + i_l dbidb i +7 F. dbidb j
i,J=l

(3.2.5)

I
I

I
I

q -- 1 q --

~ = _ bidbi r bj dbidbj (3.2.6)F = F + i 1 F +_ i,j I Fbi

Substituting Eqs. (3.2.4) through (3.2.6) into Eq. (3.2.1) and equating

equal order terms, the zeroth, first and second order equations

corresponding to Eq. (3.2.1) are:

I
Zeroth Order

I
m m

K d - F (3.2,7)

I where

I (3.2.8)

I
I

I

First Order (e terms)

i = I, ..., q (3.2.9)

I
where

I

I
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(3.2.10)

2
Second Order (e terms)

(3.2,11)

I where

i d 2 _ E dbibjAbiAb j
-- =I q --

i,J I

!
and

I
" E= {'_ FbibjI "z2 i,j t

43.2.1.2/

43.2.13)

I

I

-- and _2 are obtained by solving Eqs. (3.2.7), (3.2.9) and
Once _, dbi

(3.2.11.1, respectively, the mean and autocovariance matrices for the

nodal displacement are given by

I
I

I
I

and

e_

z[_] - ; d(b) _(b) db

+,m

Cov(di,dj) - f (di-_)(dj-_)f(b)d2

(3.2.14)

(3.2. t5)

I

I
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respectively, where f is the joint probability density function, di is

the ith degree of freedom of _, and b is the random-variable vector

= (bl, b 2, ..., bq) T (3.2.16)

The second order estimate of the mean value of d is obtained by

employing Eq. (3.2.5) in Eq. (3.2.14) to give

m I q

r_ _bibj Cov(b i ,bj )}

| Ztd] - g +7 {i,j-1

I

i

(3.2.17)

The covariance, Cov(bi,bj) is obtained from the given expectation

E[b(x)], coefficient of variation _ and autocorrelation R(b(xi),b(xj))

as follows

i Cov(bi,b j) - [Var(b(xi))Var(b(xj))]I/2R(b(xi),b(xj) ) (3.2.18)

i where

I

I

I

Var(b(xi)) - a2Z[b(xi)] 2 (3.2.19)

Similarly, the first order accurate Cov(di,dJ), which is consistent with

a second moment analysis, can be shown to be

I

I

q °

Cov(di,d j) = E _b _b C°V(br'bs)

r,s=l r s

(3.2.20)

I

I
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The strain and stress vectors for a typical element "e" are
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= B(_) de (3.2.21)

I and

I a = D(_,b) ¢ (3.2.22)

I
I

I

where de is the element nodal displacement vector. Since 8 is a

deterministic function of x, the mean value and autocovariance of ¢ can

be similarly defined according to Eqs. (3.2.14) and (3.2.15),

respectively. They are

. +I
i,J=l

I
and

ibjCov (bi, bj )}
(3.2.23)

C°V(_e'_f) = {i,j=z

[

I

(3.2.24)

Employing Eq. (3.2.4) and the element counterpart of Eq. (3.2.5),

the mean value and autocovariance of a can be shown to be

I

I

I

z[a] = _ z[e]

q

+{ " [gb _ji,j=I i_ +
1-- . _e] CovCbl,bj_" Db. b B )}

ij

(3.2.25)

I

I



I

I
I and

I C°V(_e'_f) { q (_B _e_bi
i,j=1 j

I
I

I
I

I
I
|

I
I

I

I
I

I
I

respectively.

I

5O

(3.2.26)
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Transformation of the Full Covarlance Matrix to a Dia_onal Variance
Matrix

It can be observed from Eqs. (3.2.7) through (3.2.13) that the

m _ m m

and _2 involve one factorlzatlon of K~ and q + 2determ/natlon of d, db i

forward-reductions and back-substltutlons. The latter operations

consist of one solution to evaluate d (Eq. (3.2.7)); q solutions to
~

__!

-- (Eq. (3.2.9)) and one more solution to evaluate _2 (Eq.
evaluate db i --,

(3.2.11)) where _2 is obtained by multiplying the joint probability

density function with Eq. (3.2.11) and integrating over the domain

of b to yield

d 2 " F 2 (3.3.1)

I where

I d-;-i i,i'l ilbjCOv(bi'bj )

I and

(3.3.2)

I

I
I

_, q

F 2 - i,].i{ I _blb j - _ BT_AIbjB d_ d_]

-[f_ ~BT_=~uI_ _bjd_] }C°v(bl,bj )
(3.3.3)

! Hence, from Eq. (3.2.17), the mean value of d is simply

I _ mf

E[d],., " d + d 2
(3.3.4)

I

I
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Even though the above computations are compatible with the elemental

discretization and nodal assembly procedures that characterize finite

element theory and software, the number of matrix multiplications is

proportional to q(q + I)/2. This would be unacceptably expensive. The

large number of computations arise from the double summations in i and j

in Eq. (3.3.2) and (3.3.3). To remedy this situation, the covariance

matrix Cov(bl,b j) is transformed to a diagonal variance matrix

Var(ci,cj) such that

Var(ci,c j) = 0 for i _ J (3.3.5)

and

Var(ci,cj) - Var(ci) for i = j (3.3.6)

Therefore, the number of matrix multiplications is proportional to q.

The above involves the solution of the eigenproblem:

,0 _ - _ A, (3.3.7)

where the ~G and ~A matrices are used to denote Cov(bi,b j) and Var(ci,cj) ,

respectively; and _ is a constant q x q fundamental matrix with the

following properties:

T T
J_ j_ -_ _ = ,,,1 (3.3.8.)

i
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I

I

T
A -_G_
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(3.3.9)

and

m (3.3.10)

m I is the q x q identity matrix and c is a transformed q x I random

l

I

I
I

variables vector.

With Eqs. (3.3.9) and (3.3.10), the -txed derivatives appearing in

Eqs. (3.2.21) through (3.2.28), (3.3.2) and (3.3.3) reduce to second

derivatives. For example, Eqs. (3.3.2) and (3.3.3) become:

_, q _ciciVar(ci)
(3.3.11)

I and

I -' " _.{7L ici _ B_ d_]F2 i 1 ~ "ctci~ 'v

~ ~Cl~ ~c i

i
I

I

d_]}Var(cl) (3.3.12)

Analogous to modal analysis in structural dynamics problems, only a

few modes (i.e. Var(ci)) are required to capture the major

characteristics of the probabilistic distributions. However, the

highest eigenvalues have to be employed. This is in contrast to the

I
•modal structural problem wherein the lowest eigenvalues are used.

I

I
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3.4 Computational Procedures Using the Transformed Random Variables

Assume that n highest Var(c i) are adequate to characterize the

probabilistic distribution. The discrete ci are transformed according

to

q

C i

J'I

i m _, "''s n (3.4.1)

and the mean and variance of c are

s [l] = _T_[b] (3.4.2)

and

Vat(c) = diagonal terms of A (3.4.3)

where

(3.4.4)

The zeroth-order matrix equations to be solved are:

Kd,-F (3.4.5)

The n first-order matrix equations to be solved are:



I

I
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I ! dci _ fi+2
i =t lj 0,.0 s n (3.4.6)

I where

I

I
~C i

i a8 ls ,,001, n

The second-order matrix equations co be solved are:

(3.4.7)

I
I

I
where

n

(3.4.8)

I
Q ~ci~ ~c i

(3.4.9)

I It is also interesting to note Chat Eqs. (3.4.5) through (3.4.9)

I can be put into the general form of

I KdfF
(3.4.10)

I

I

where K is an (n + 2) x (n + 2) block lower triangular matrix of the

form

I

I

I
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I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K mE

B

K 0 0 • •

K K 0 • •

~c 1 ~ ~

o g • •
~c 2 _ ~

K 0 0 • •
_C _ _

n

522 51 52 " "

w

0 0

0 0

0 0

K 0

K K
_n

m
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m m m m

where K, Kci , _i and _22 are

R

(3.4.11)

~ci R ~ ~ci~
i m _1, "0"_ n

(3.4.12)

~ -~L:i

i = 1_ ...p n

no sum

(3.4.13)

and

n

-:_2"-'I v-_ioiv'_(ci)

(3.4.14)

Accordingly, d and F are n + 2 block vectors which are defined by
~

d - <:,L,,L,,"",d-,:,)_

(3.4.15)

and

(3.4.16)

I



I

J where

I

I
I

I

n

- _pi wr(_i)]
(3.4.18)

The mean and autocovarlance matrices for the displacement are:

"(_]"_ +_2 (3.4.19)

I

I

and

n

Cov(dl,di) - J mIZ _cj_cjVar(cj )
(3.4.20)

I The mean and autocovarlance matrices for the element strains are:

I
I
I

I

and

n

(3.4.21)

(3.4.22)

I Similarly, the mean and autocovariance matrices for the element stresses

are:

I

I

I



I

I
I

I
n

i-I ~ci~ ~ci + _ _clci__]Var(ci)}
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(3.4.23)

II
and

m _

I

I

I

I

n i)( f_ )T
I-I i

ci ci

+ CDeB_ )CD_ B_) T
_ci ~ci~ ~

(3.4.24)

I Remark 4.1 While the presentation of the PFKM solution algorithm via

Eqs. (3.4.10) through (3.4.18) is quite elegant, these equations are not

employed in practical computations since the formulations of , Ki,

_22 and the triangulation of K are unnecessary. Instead, the

I "sequential algorithms" given by Eqs. (3.4.5) through (3.4.9) are

I

I
I

employed. It should be noted that only the K matrix needs to be formed
~

_ m o

and triangulated and F, Fi+ 2 and F 2 are obtained by vector computations.

Remark 4.2 Once_ is given by Eq. (3.4.5), the _ as defined by Eqs.
_c i

(3.4.6) and (3.4.7) are best obtained with parallel computations.

I

I

I
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I

and D can be computed by direct
Remark 4.3 The matrices Db i bib j

differentiation or by the least-squares fit of the series Eq. (3.2.4)

around b. Once these matrices are obtained, the transformation Eqs.

(3.4.1) and (3.4.2) can be employed Co yield
~c i

F and F can be obtained,
~c i ~cic i

and Dcic i Similarly

Remark 4.4 The PFEM, as developed here, can incorporate smooth (C°)

shape functions in Eq. (3.2.4). However, this may result in move

integrationpointsintheevaluationof_ ,_i and_--22inEqs.(3.4.13)
~C i

through (3.4.15). To minimize computations, a super-element that spans

several elements used for the displacement approximations and in which

the shape function is a constant, is employed in the numerical examples

studied here.

I
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PFEM for Transient Analysis of Nonlinear Continua

The transient equations for the finite element model, which account

I for both geometrical and material nonlinearities, are:

I ec_,t) + _(d,_,_)- £<b,t) (3.s.1)

I where M is the deterministic mass matrix; f is the internal force

I
I
I

I

vector; d, _ and _ are the displacement, velocity and acceleration

vectors, respectively; F is the external force; b is the discretized

random vector and t is the time. Following the same procedures outlined

in the previous sections, the _, F and ~f vectors are expanded via Taylor

series, however, total derivatives are applied to f. The second-order

formulas for ~a' F and ~fare

q -- 1 q --

I _ = a + iF.=l abidb i + _ i,J_,,l abibj dbidbj
(3.5.Z)

I q -- I q,.F = "_ + i_ 1 Fbidb i + _ i,J=l_ _bib jdbidbj
(3.5.3)

I and

I

I

I
I

q

.... _-_]_hf - f + i_:l[tbj. + c ,bi +

q -- I---- ' I----

+_,_-_[½_"_"_+___"_h +___ _J

(3.s.4)

I

I
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where the tangential damping matrix and the tangential stiffness matrix

are defined by

_f
C m--

~ _v
(3.5.5)

and

_f
N

K a--
~ _d

(3.5.6)

respectively. Using the above approximations in Eq. (5.1), the q + 2

solutions for d, _ and _ are:

Zeroth-Order Equation

M _ + T = T (3.s.7)

First-Order F_uations

i - I, ..., q (3.5.8)

and

i-l, ..., q (3.5.9)

I
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Second-Order Equations
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I where

I -- I q ib jCov(b i ,bja2" _
i,J=l

(3.5.10)

I _-_- -__,_.__;,,i,,j_,,(bi,b__

II - _
d2=l q

r _ibj Cov(bi,bj )2 i,J=l

I

I

I

and

-- q 1 -- 1 -- -- -- }Cov(b i,bj)
F 2 = i,]=l{_ Fbib j - _- fbib j - CbiVbj - _idbj

(3.5.11)

(3.5.12)

(3.5.13)

I

I

!

(3.5.14)

I
I

I

The computational effort in solving Eqs. (3.5.8) through (3.5.14)

can be reduced significantly by transforming the full covariance matrix,

Cov(bi,bj), to a diagonal variance matrix, Var(ci). Since Eqs. (3.5.8)

through (3.5.14) are linearized equations, the transformation procedures

are parallel to those outlined in Sections 3 and 4. If n (recall n < q)

highest Var(c i) are used, the q + 2 block system becomes an n + 2 block

system. These n + 2 blocks are:

I

M E + T ,. T (3.5.15)

I
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i _ 1, ..., n (3.5.16)

(3.5.17)

m

where

i m _s "'°s n (3.5.18)

I and

I

I

I

(3.5.19)

Equations (3.5.15) through (3.5.19) are similar to those developed for

the probabilistic dynamic response of a truss structure with

uncorrelated random variables [15,16]. Therefore, the numerical

solution algorithms given in [15,16] can be employed directly for the

I

I

solutions of the above equations. Once a, v, d, a , v , d cl,_i _i _2' _2

and d 2 are obtained, the mean and autocovariance matrices can be

computed according to:

I (3.5.20)

I
I

I

(3.5.21)

m

E[a] - a + a 2 (3.5.22)

I

I
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!

l

!

l

l

and

r-I

n

r=l r r

n

co,(,',,J) -( = _ _ v,,(_ )}
rml r r
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(3.5.23)

(3.5.24)

(3.5.25)
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3.6 Applications

The PFEM formulation developed in Sections 2 to 5 has been tested

by studying two different applications. These are: (I) wave

propagation in a one-dimensional elastic/plastlc bar; and (2) static

response of a two-dimenslonal plane stress elastic/plastic cantilever.

In these numerical examples, the expectation, the spatial

autocorrelatlon and the coefficient of variation of the random field

b(x) are assumed as follows:

E[b(xi)] - bo(1.O + Oxi/L) (3.6.1)

and

R(b(xi),b(xj)) - exp(-Ixi-xj[/k)
(3.6.2)

a - 0.1o (3.6.3)

where xi, L, _, and b(x i) denote the location, the length of the

bar/beam, the correlation length and the random function at xi,

respectively. 0 and bo are constants. It is to be noted that the

autocorrelatlon between any two points depends only on the interval

between these points and not on their locations. The material in the

bar/beam is assumed to be linear elastic and isotropic hardening, with

the unlaxial yield stress as a Gausslan random field in the axial

direction. As can be seen from Eqs. (3.6.1) and (3.6.2), the yield

!
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stress is a linear function for the mean and an exponential function for

the spatial autocorrelatlon.

The problem statement for the bar is depicted in Fig. I. The

random field is dlscretlzed so that q - NUMEL = 32. The probabillstlc

equations derived earlier are solved by the explicit predictor algorithm

[15] with a slight numerical damping (7 - 0.55). A near-critlcal time

step (At - .000455) is used to keep the number of time steps mlnimal,

subject to the stability conditions.

In the case of the beam, the static response is calculated as a

function of steadily increasing loading, by an implicit algorithm. The

random field is dlscretlzed with 64 4-node 2D elements so that q ffi16

(NUMEL - 64).

The mean and variance of the displacement at the free end of the

bar, the variance and autocorrelation of the stress along the beam are

computed using PFEM. These results are compared with Monte Carlo

simulation (MCS) of 400 realizations with a first-order filter [5,9].
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3.7 Results and Conclusions

The mean and the variance of the displacement at the free end of

the bar, computed by PFEM and MCS, are compared in Figs. 2 and 3. The

coefficient of variation of the displacement at the free end of the bar

is found to be _0.13 (the coefficient of variation of the yield stress

is 0.i0). The PFEM solutions compare very well with the MCS solutions.

Although both methods compare very well in accuracy, the PFEM in this

case needs -,,ch less computer time than the MCS. The convergence of the

variance of displacement at the free end of the bar is plotted in Fig.

4, against the number of modes used in the PFEM computations. It is

observed that only the largest 8 of the 32 elgenvalues (which correspond

to the variance of the uncorrelated variables ci) are sufficient, for an

error less than I%.

The variance of the stress at the fixed end of the beam, with

increasing loading, is plotted in Fig. 5. The maximum coefficient of

variation is found to be 0.09, and it occurs when the beam begins to

yield, at the mean configuration. The PFEM variances are in excellent

agreement with those of MCS. The autocorrelation of the stress along

the length of the beam, with respect to the stress at the fixed end, is

plotted in Fig. 6. As expected, the autocorrelatlon near the fixed end

is _I.0 and beyond that it decreases rapidly. The PFEM autocorrelation

is in fairly good agreement with that of MCS. As in the case of the

bar, _ a few eigenvalues are found to be necessary. The largest 4 of

the 16 eigenvalues are sufficient to ensure an error less than 5%.

Since the random field is handled by discretization, it is easy to

i
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incorporate any specified mean, variance and autocorrelatlon structure

in PFEM. As the stiffness matrix corresponding to the mean value of the

random field appears in all the PFEM equations, the triangulation needs

to be done only once and the computations are thereby reduced. The

transformation of the correlated variables to a set of uncorrelated

variables further reduces the computations as the covarlance matrix is

reduced from a full matrix to a diagonal matrix. However, to do this an

elgenvalue problem of the covarlance matrix needs to be solved.

Numerlcal results obtained here suggest that a reduced set of the

uncorrelated variables is sufficient to predict the response moments

accurately. The PFEM essentially involve solution of a set of

deterministic problems, and therefore, they are easily integrable into

any FEM based code.
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CHAPTER 4

PROBABILISTIC FINITE ELEMENT METHODS FROM VARIATIONAL PRINCIPLES

4.1 Introduction

Much research has been done in the recent years to quantify

uncertainties in engineering systems and their combined effect on the

response. Theoretically, these uncertainties are modeled as random

fields or random variables governed by Joint probability density or

distribution functions. In practice, the exact joint probability

density functions are not always available; only the first few moments

such as the mean, variance and correlations are known. The effect of

these uncertainties on the system is ideally evaluated by examining the

probabillstlc character of the response, such as the probability of the

response exceeding allowable llmlts. These limits are referred to as

the failure surfaces. Recent research in reliability is focused on

developing efficient techniques for this purpose. In general, these

techniques involve much computation and are subject to various

restrictions on the nature of the failure criteria.

At the next level, estimates of response bounds, the level crossing

rate or first passage time may be obtainable in some cases without

extensive computations. At the easiest level of computation, the

response statistics such as the mean, standard deviation and correlation

coefficients are calculated [1,2]. These quantities are not only useful

in themselves, but are also useful to calculate measures of reliability,

e.g., the reliability index and reliability in terms of probability of

survival [I-5]. In the past, the distribution functions for the
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response were assumed and by using the response statistics, the

probability of failure or survival was calculated [2]. Under a

combination of uncertainties, the response distribution functions may be

difficult to obtain.

More recently, second moment reliability techniques have been

formulated in the space of the input uncertainties. Here, the non-

normal uncertainties are transformed to normal variables and the failure

surface is described in terms of the response quantities.

Transformation to normal variables is done to make use of the special

characteristics of normal distributions, such as rotational symmetry and

rapid exponential decay of the density function. If the failure

function is linear in terms of the response, the probability of failure

is expressed in a straightforward manner in terms of the response

statistics [2,3]. If the failure function is nonllnear, approximating

it by a quadratic function yields accurate reliability values [5].

For analysis purposes, tlme-lnvarlant and tlme-variant

uncertainties need to be distinguished. In the latter the probabilistic

features, such as density functions and statistics, vary with time. For

example, in a static analysis of structures, only tlme-lnvariant

uncertainties, such as experimentally determined material properties,

may be present. Conversely, in the dynamic analysis of structures, the

forces such as earthquake excitations, wind and wave forces, and jet

noise excitation of aircraft panels are often treated as tlme-varlant

uncertainties. Compared to time-invariant uncertainties, these are very

difficult to quantify exactly, and assumptions such as Gausslan density
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functions, stationarity, ergodicity and white noise characteristics are

common [6,7]. In structural mechanics, the characterization of time-

variant uncertainties in excitations, particularly seismic loadings, is

an area of active research [8-I0,14,15]. Expressed mathematically,

these are differential equations with stochastic excitations. For

linear systems the problem is tractable because of the applicability of

spectral decomposition and superposition techniques [6,7,11]. For

nonlinear systems, techniques such as equivalent linearization have been

adopted with success [6,12,13]. A concurrent, albeit less extensive,

area of research in structural mechanics is the one that deals with

stochastic coefficients of both types. Problems with time-variant,

stochastic coefficients have proven to be the toughest to analyze and

still are an active research area.

Apart from simulation techniques [2,16,17], a few non-statistlcal

approaches are also currently available for solving problems with

stochastic coefficients. These include numerical quadrature [18,19],

second-moment analysis [20,21], the truncated hierarchy method [22], the

method of moments [23], stochastic Green's function method [22],

numerical solution of random integral equations [30,31] and the

stochastic finite element method [29]. Merits and drawbacks of these

and other methods are discussed in Refs. [24,26,29].

Recently, probabilistic finite element methods (PFEM) based on

second-order perturbations have been formulated by the authors, for

treating time-invariant, stochastic coefficients and excitations. These

methods are based on second-moment techniques, so they are applicable
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when the uncertainties are not too large and when the probabilistlc

density functions have decaying tails. Numerical results for various

applications in trusses, bars, beams and plates have demonstrated the

accuracy of PFEM, as compared with Monte Carlo simulation results [24-

27]. These include both static and transient analyses of both linear

and nonlinear structures, wi_h random fields. Sample results for an

elastoplastic cantilever beam wlth the uniaxlal yield stress as a random

field are given in Figs. la-ld [26]. The most appealing features about

PFEM are its conceptual simplicity, ease of computer implementation, and

computational efficiency. The special structure of the finite element

equations, with features such as the symmetric stiffness matrices and

the linear nature of the higher order equations, can be utilized to

enhance the computational efficiency of the method for large-scale

systems with many random variables. Compared to Monte Carlo

simulations, computational requirements are often an order of magnitude

smaller.

This paper focuses on the development of efficient and accurate

methods for calculating the response statistics in structural mechanics,

making use of finite element modeling and solution techniques. By

developing the PFEM equations from a variational principle, the

randomness in the shape of the domain and boundary conditions can be

treated. The PFEM equations are derived for linear continua from the

potential energy variational principle in the next section. In Section

4.3, the PFEM equations for nonlinear continua with large deformations

are derived. It is shown that the final equations are similar to those
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derived for the linear equations. Uncertainties arising from material

and loads are accounted for in both formulations; randomness in the

geometric properties such as shape is also included in the latter

formulation. The PFEM equations are solved efficiently by numerical

methods described in Section 4.4. The emphasis in this section is on

numerical algorithms for computing the first and second order statistics

of the displacement and stress and internal force. In Section 4.5,

applications of PFEM to an elastoplastic plate with a hole and a turbine

blade modeled by shell elements are studied. Results are summarized and

discussed in section 4.6.
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4.2 Development of PFEM for Linear Continua from the Potential Energy

Variational Principle

The weak form which is obtained from the potential energy

variational principle is:

I
I

I
I

f _u(i,j)Dijk_U(k,_)dn -f 6uiFi=m- f
f_ f_ _f_h

where the strain components are

I _ui= de=f _-4--

eli u(i,j) 2_xj + _xi)

6uihidr = 0 (4.2.1)

in R (4.2.2)

I
and the stress components are given by the linear stress-strain law

I oij = Dijktekt in O (4.2.3)

I

I

The traction and prescribed displacement boundary conditions are given

by

I aijn j = h i on _Rh (4.2.4)

I and

I ui = gi on 8_ (4.2.5)
g

I

I
respectively. _u i is an arbitrary test function which satisfies

I

I
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8u i = 0 on _Rg
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(4.2.6)

R is the domain, _fih and _g are the traction and prescribed

displacement surfaces, respectively, which satisfy

_nh A _ng =
(4.2.7)

In the above equations: u i are the components of the displacement, x_

are the spatial coordinates, nj are the components of the normal vector;

Dijk_ are the components of the material response tensor; Fi, h i and gi

are the components of the body force, the prescribed traction and the

prescribed displacement, respectively. Repeated indices denote sums and

a comma denotes partial differentiation.

The probabilistic potential energy variational principle (PPEVP),

which is a combination of the potential energy variational principle and

the second-order perturbation method (i.e., the second moment analysis),

embeds the probabilistic distributions, as reflected in the mean and

covariance of the material properties, domain, boundary conditions and

loading, to yield the corresponding means and covariances of the

response in the variational statement. The basic idea of the second-

order perturbation method in PPEVP is to expand each random function

about the mean value of the random field b(x), denoted by _(x), and

retain at most second order terms. That is, for a given small

parameter 6, representing the scale of randomness in b(_), the random

function u i is expanded about b via a second-order perturbation at a

I



I
I

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I
I

given point x by

8O

O ! 2 "

uI = ui + _u i + _ u i (4.2.8)

0 ! ,t

where ui, ui and ui are the zeroth, first and second order functions,

respectively. Similar expansions are done for Dijk£ , Fi, hi, nj and gi"

To simplify the subsequent development, the following abstract

notations are introduced:

_,v,_> = f w(i,j)vijk_u(k,_ ) dO (4.2.9)

(w,F) = f wiF i dO (4.2.10)

(w,h)_ = f wih i dr
_h

(4.2.11)

Substituting the expanded functions into Eq. (4.2.1) and equating equal

order terms, the zeroth, first and second order potential energy

variational principles can be shown to be

Zeroth Order

(4.2.12)

First Order (_ terms)

I
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(4.2.13)

Second Order (6 2 terms)

¢. .. .. u ! !

<6,u,,D°,u > = (6u,[) + (6u,h 1_ - <6u,D ,u°> - <6u, D ,u > (4.2.14)

Remark 2.1 The arbitrary test function 6u satisfies _u = 0 on the

boundary _R •
g

Remark 2.2 All the functions with a superscript "o" are deterministic

functions (i.e., evaluated ate) whereas functions with superscripts "'"

and '"' are random functions characterized by the random field b(x).

Remark 2.3 Equation (4.2.12) is the standard deterministic variational

statement and therefore, the usual Galerkln finite element procedure can

O
be employed directly. Once u is determined from Eq. (4.2.12), the

! m

random functions u and u can be determined using Eqs. (4.2.13) and

(4.2.14), sequentially.

! ! ! !

It should be noted that the random functions D , F , h and _ and

the functions with the superscript '"' are, in general, described

through spatial expectation and autocovarlance functions. Therefore, in

addition to the usual finite element approximation of the displacement

field, the random field is also discretized with q shape functions. To

incorporate the spatial expectation and autocovariance functions into

the formulation, the discretized random variables bK are expanded
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about _K via second moment methods. The first order variation at each

point _K is denoted by dbK ffi_Ab K - _(bK-_K).

For consistency with the finite element approximation and to assure

the accuracy of the approximation of the random field, the random

functions D, F, ~h and g; which are, in general, functions of b(x)~~ and

x, are first discretized with the same q shape functions. For example,

the finite element approximation of D, (the coefficient I/2 has been

added to the quadratic term (Eq. (4.2.18)) so that it is consistent with

conventional descriptions of second moment analysis) is given by:

' 2"D = D° + _D + D (4.2.15)

or

D = C 01(x){D I + _D I + _2 (4.2.16)
I=l

where D I denotes the I th nodal value of D evaluated at b, D I denotes the
ee

first order variation of D(xI,_) due to variations AbK, D I denotes the

second order variation and 0i(x) are the q shape functions. The random
t

variables D I are then expanded in terms of the random variables bK by

, q ,

D I = E (DI) K Ab K
K'I

(4.2.17)

" 1 q "
D I - _ r (DI)KL AbKAbL (4.2.18)

K,L-I

I
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respectively. The nodal values of (DI) K and ( )KL can be obtained by

partial differentiation or by a least-square fit. Similar definitions

I hold for F, h and g.

The displacement is discretized similarly, however, with NUMEL

!

I
I

I
I

elements and NUMNP nodes with each node having NDOF degrees of freedom,

via (c.f. Eq. (4.2.8)), where

NUMNP

uo . _ _A(_)d?~_
~

A-!

(4.2.19)

, NUMNP

u - _ SA(X)dA~~~

A,,1

(4.2.20)

., NUMNP

~

A=,I

(4.2.21)

m

i
and NA are the displacement shape functions.

V ee

variations of dA and dA are defined by

, q ,

I _A " KZ1 (_A)K 6bK

The first and second order

(4.2.22)

I and

dA - -_
K, LffiI

I
I

I

(_:)gj., AbKAb L (4.2.23)

respectively.

Substituting the above Galerkin/finite element approximations into

the zeroth, first and second order variational statements, the finite

I

i
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element matrix equations can be obtained using Eqs. (4.2.19-21) and the

arbitrariness of _d,

6d~ = (6dl,6d 2,...,6dxzQ) T (4.2.24)

It should be noted that only NEQ test functions are required since no

test function is needed on the parametrized boundary 3Rg; NEQ is the

number of finite element equations to be solved.

Zeroth Order

K d° - fo (4.2.25)

where

D°
= {KAB } = <NA, ~ , NB> (4.2.26)

_o = {fA}= (NA,zo)+ (NA,hO)_

<_Aoo _c>g_ (4.2.27)

d ° = {dB} (4.2.28)

where the subscript A takes the values of I to NEQ, B is summed from 1

to NEQ and C is summed from NEQ + 1 to NED; NED is equal to NDOF times



I

I
I

I
I

I

I
I

I
I
I

I
I

I
I
I

I

I

N_P •

First Order (for each Ab K) K - I, ..., q

! !

_here

| i | I | | |_z {_A}Z {HA' _K) + CNA'hZ)_- <HA,_:, ,_o>

!

-<SA' _o,%>(gc)K

and

! !

d K " {ds} K

Second Order (K and L are summed from I Co q)

eo N

Kd -f

where

N

" {fA}KL AbKAb L

_L I " I " B_o>" {2 (SA'_ ) +_ (SA'_KL)a-_ <NA'v_KL'

85

(4.2.29)

(4.2.30)

(4.2.31)

(4.2.32)

i



I

!

i

|e

' ' 1 D° Nc>(gC)KL } AbKAbL- <SA'DK'_> -7 <NA'..- '
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(4.2.33)

!
and

I . = _ {dB}KL AbKAb L
(4.2.34)

I
I

I

The mean and autocovariance matrices for the nodal displacement are

defined by

Ztd] - f d(b)_(_,b)db (4.2.35)

and

m

i

Cov(diA,djB) - f" (dIA- _IA)(djB- _jB) f(_,b)db (4.2.36)

respectively, f is the Joint probability density function which is

i dependent on 6. b is the random-variable vector

i = (bl, b2, ..., bq) T (4.2.37)

i
With Eq. (4.2.35), the second order accurate mean value of d is shown to

! be

Z[d] - d ° +_ (4.2.38)

!

i

i
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where d is given by
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--" l q "

d = _ Z dKL CoV(bK,b L) (4.2.39)
K,L=I

From Eq. (4.2.36) the first-order auCocovariance of the displacement can

be shown to be

q ! !

Cov(diA,djB) = E (diA)K(djB) L CoV(bK,b L) (4.2.40)
K,L=I

To simplify the computational procedure of Eqs. (4.2.32-34),

integrate Eq. (4.2.32) over the range of the random variables so that it

is replaced by

m

K d = f (4.2..41)

is given by the right-hand

N

where d is given in Eqs. (4.2.39) and f

side of Eq. (4.2.33) with AbKAb L replaced by Cov(bK, bL).
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4.3 PFEM for Nonlinear Continua with Large Deformations

In this section, the PFEM formulation for large deformations of

hyperelastic materials in bodies of random shape is considered. The

simplest form of the weak form for nonlinear elasticity with large

deformations is:

88

f 6_ _ - f _ _ ÷ f _ (4.3.1)

where _, _, ~F and ~h are the nonsymmetric measures of the strain, first

Piola ILirchhoff stress, body force and traction, respectively; R and

_Rh are the domain and natural boundary, respectively, in the initial

configuration. Furthermore, the strain measure is given by

¢ - Vu - G - I (4.3.2)

where G is the deformation gradient and I is the identity matrix. The

stress for a hyperelastic material is given by

= _(G) (4.3.3)

where

_W (4.3.4)

and W is the strain energy density function. Randomness in material,
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geometric properties and loads are represented by the random field

b(_). To incorporate the random domain and boundaries into the

formulation, Eq. (4.3.1) can be rewritten as

89

R R _R h

8uTh J _ (4.3.5a)

employing the following mappings of the original domain R and boundary

aR h onto the reference domain R and boundary A:

dR - J dR (4.3.5b)
V

and

dF = J dA (4.3.5c)
8

The displacement is approximated by a second order perturbatlon about

the mean random field b at a given x:

0 t 2

u = u + _u + _ u (4.3.6a)

where _ represents the scale of randomness in b(x). Similarly, ¢, F,

h, Jv and Js are expressed as second order perturbations. The stress is

expanded as

o ' cO¢ ' 2( " ' ' co¢"= _ + _(_ + ) + _ + C ¢ + ) (4.3.6b)

I
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where the first elasticity tensor is given by

9O

_2W
C s-- (4_3.6c)

The derivatives of nonlinear functions such as _ are given in gef. [28];

however for nonlinear elasticity, the derivatives can be worked out

explicitly. In addition, since the boundaries are parametrized, it is

necessary to perturb the virtual strain in Eq. (4.3.5a) as this is a

function of the domain geometry. Thus,

cO t 2 C"_¢ = 6 + _6_ + _ 6 (4.3.6d)

The randomness in domain and boundary geometry is taken care of by the

Jacobians Jv and Js' respectively, in Eq. (4.3.5a).

Substituting Eqs. (4.3.6a) through (4.3.6d) in Eq. (4.3.5a), the

PFEM equations are obtained:

Zeroth Order

oT ojo uTFOjO ~ ~f 6_ _ v dR = f 6~ ~ v dR + f 6uTh°j: dA (4.3.7)

R R _R h

First Order

IT o_o t

f[_ _Jv +_°z(_
R

coE')j _ oT o '+ + 6_ _ Jr]dR

I



I

I

I.
I
I

. f[_,jo ++uTFOj'ldR+ f [<Th'jO+ JhOj'ldA"" " Va _" S _, '_, S J
R a_

Second Order

R

'To '
+cO')jov+_ _J+v
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(4.3.8)

I ,sS T(_" ' '
+ o +C¢

T w t= f[+uTF"j°--,,,,v + 6u F Jv + +uTF°j"]dR,-,~ v .+
R

I
I

I
I

+ f [+u_",.,:++_T+.,+ (4.3.9)

It is noted that the test function 6u satisfies 6u = 0 on the

parametrlzed prescribed displacement boundary DR and the intersection
g

of the boundaries _P, and DR is a null set.
g

Since Eq. (4.3.7) is the deterministic virtual work principle,

I

I

I

I

standard techniques such as Newton Raphson iteration can be employed for

o o o
its solution. After decermlnlng u , _ and _ from Eq. (4.3.7), the

I I I rl Ii ,I

random functions ~u , ~¢ , _ and ..u, -¢ , _ can be determined from Eqs.

(4.3.8) and (4.3.9), sequentially. It should be noted thac the random

! ! ! ! !

and J and the functions with thefunctions_ , c ,z ,_ , J+ v

superscript '"' are, in general, given and described through the spatial

expectation and autocovariance functions. Similar to the previous

I

I

section, the random functions are discretized with q shape functions.

For example, the finite element approximation of the first

I
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elasticity tensor, C, is given by:
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' +2 "C = C° + _C + C (4.3.10a)

or

q
C= r

I-I

(4.3.10b)

where C_ denotes the Ith nodal value of ~C evaluated at _,

, q ,

_i " _: (cl)M Ab_
M=I

(4.3.10c)

and

" 1 q C_"

M,N-I

(4.3.10d)

respectively. Similar definitions hold for F, h, _, Jv and Js"

Similarly, the displacement field is discretized, however with

NUMEL elements and NUMNP nodes with each node having NDOF degrees of

freedom (see Eqs. (4.2.8) and (4.2.19-23)).

The elemental strain is expressed as

¢ = B d (4.3.11)

where B is the discretized gradient operator. The strain perturbation

I
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O f 2 ,i

£ = _ + [_ + _ _ (4.3.12)

or

' o o ' 2(B'_o ' ' o ")~_ = B°d° + _(Bd~ ~ + B d )+~ ~ + Bd~ ~ + Sd~~ (4.3.13a)

and from Eq. (4.4.3.6d)

' o 2B'_o8¢ = S°6d ° + _B 6d + (4.3.13b)

Substituting Eqs. (4.3.10) through (4.3.13) in Eqs. (4.3.7), (4.3.8) and

(4.3.9) and using the arbitrariness of 8d ° the zeroth, first and second

order equilibrium conditions are obtained, respectively:

Zeroth Order

_oT o_o NTF°j ° dK + j" NTh°j ° dAf _ _ JvdR" f ~~ v ~~ s

R R aR h

(4.3.14)

First Order (for each bM, M = I, ..., q)

! t

_dM " _M (4.3.15a)

where

I
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0 ' NT[h' 0 0 t_M'" f NT[_v'o + _ (Jv)M]dR+ f ~ ~r's+ _ (Js)M]_
R 3R h

- B'T ojof ~ _ _ dR- f s°T(_
R R

oT o t
+ C°B'd°)J ° dR- f B _ (Jv)M dR(4.3.l.5b)

R

wLth

C°.D°+T ° {4.3.15c)

resulting in

_'_+_G (4.3.15d)

where

S°TD°B°J° dR
_KD " f ,-. ,-, ,,. v

R
(4.3.15e)

and

s°TT°_°PdR
_G'f N .+.+ v

R

(4.3.15f)

where D° and T° represent the material response and initial stress

matrices respectively. Explicit expressions of these matrices for a QBI

element are given in Ref. [38].
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*e N

Kd sf (4.3.16a)

where

" {f _ [7 + gM(Jv)N ÷
R

i Fo(J_)MN]dRT

l ' ' I hO(j_)_]dA
_zh

'T o '

- fRBM'T(_N' + ~C°B'°~N_ + C°B°d'N)J O dR - RS _M ,'_ (Jv)N dR

_oT.l ' ' o ' o ' I £oB_o . o ' ' o
R

_o_,,÷_o_o+oo- C B dM)(Jv)N dR

1 _"T o o dR} (4.3 16b)_f_t sot _o(j_)_ dR - f _ _m_ Ov AbMAbN
R R

and

1
(4.3.16c)

Eqs. (4.3.14) through (4.3.16) are solved in sequence.

The second order accurate mean value of d is
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(4.3.17a)

,I

where d is given by (c.f. the previous section)

--" 1 q "

d - _ Z _N C°V(bM'bN)
M,N'I

(4.3.17b)

and the first order accurate autocovarlance of the displacement is

q V !

Cov(diA,djs) - _ (diA)M(djB)NCOV(bM,b N)
M,N=I

(4.3.17c)

The mean and autocovarlance matrices for the element strains can be

obtained from the following:

z[_] =5 ° +_-" (4°3,18a)

where

¢o . BOd o (4.3.18b)

ml

and ¢ is defined by

._- q
¢ - r

M, N=I

t t I 0 "E½_o ÷_ +___I _ov_,_ (4.3.18c)

Thus

C°v(5i,_j) = q ' ' T Cov(bM,bN)Z (_i)M(_j) N
M,N=I

(4.3.18d)
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t ' 0 0 t
(_i)M - (Bi)_i + Bi(di)M i = I, ..., NUMEL, no sum on i (4.3.18e)

M = I, ..., q

where subscript "i" denotes the ith element and NUMEL is the total

number of elements. Similarly, the mean first Piola-Kirchoff stress is:

.==le

E[O] = go + a (4.3.19a)

where

o o
a = _ (4.3.19b)

and

ct

- q ' 'o ' o ' z COBM_dO
M,N=I z

o ' ' 1 cOBO_,ICoV(bM,bN) (4.3.19c)

and the stress autocovariance is defined by

q

cov(2i,£j)= z
M,N=I

' ' T

(£1)M(_j)N CoV(bM,b N)
(4.3.19d)

with the definition

I



I

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I

I
I
I

' 0 _ 0 0 0 '

98

i .. I, ..., NUMEL, no sum on i

M= I, ..., q

(4.3.19e)
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4.4 Computational Aspects of PF_

4.4.1 Transformation of the Covariance Matrix

In linear problems, it can be observed from Eqs. (4.2.25), (4.2.29)

dO v __.'.
and (4.2.41) that the determination of ~ , dK and d involve one

factorlzatlon of K and q + 2 forward-reductlons and back-substltutlons.
N

The latter operations consist of evaluation of d° in Eq. (4.2.25), q

| *J

evaluations of d K in Eq. (4.2.29) and one more evaluation of _~ in Eq.

(4.2.41). Even though the above computations are compatible with the

elemental discretizatlon and nodal assembly procedures that characterize

finite element theory and software, the number of matrix multiplications

is proportional to q(q + I)/2. This would be unacceptably expensive.

The large number of computations arise from the double summations in i

and J in Eq. (4.2.33). To remedy this situation, the covariance matrix

Cov(bl,b j) is transformed to a diagonal variance matrix Var(ci,c j) such

that

Var(ci,c j) = 0
for i # j (4.4.1a)

and

Var(ci,c j) = Var(ci)
for i = j (4.4.1b)

Therefore, the number of matrix multiplications is now proportional to

q. The above involves the solution of the eigenproblem

I
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= _ (4.4.1.2)

where Gij and hij denote Cov(bi,b j) and Var(ci,cj) , respectively,

and _ is a constant transformation matrix with the following properties:

i 'r_. ,_'r .

I
I

(4.4.1.3a)

. _T_ (4.4.1.3b)

I
and

I b-_ or c-_b
(4.4.1.4)

I

I
I

I is the q x q identity matrix and c is the transformed q x I random

variables vector. The mean and variance are

_[_] - _%.[_] (4.4.1.5)

I and

I Var(_) = diagonal terms of A (4.4.1.6)

I
With Eqs. (4.4.1.3b) and (4.4.1.4), the mixed derivatives appearing

I

I

in Eq. (4.2.40) reduce to second derivatives, and the covariance matrix

is replaced by the diagonal variance matrix in Eqs. (4.2.33) and

I

I
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(4.2•40)•

Analogous to modal analysis in structural dynamics problems, only a

few modes n(n < q) (i.e•, Var(cl)) are required to capture the major

characteristics of the probabilisticdistribution. However, the highest

I
I

I
I

eigenvalues have to be employed. This is in coutrast to the modal

structural dynamics problem, wherein the lowest eigenvalues are used•

As PFEM involves, essentially, a set of sensitivity equations with

respect to c, recent techniques in design sensitivity analysis can be

adapted easily. One such technique is the adjolnt method in mechanical

design [32-35]. In this method, the first and second order derivatives

of the objective functions and constraints are calculated w•r.t• the

I
I
I

design parameters, with minimal computations of the first and second

order equations•

4.4.2 Ad_olnt Method in PFEM

Consider a typical function _(_,d) involving the displacements

I and the random variables c. Chain differentiation yields

W

i [_]c I _ci T d i ffi 1, ..., n (4•4•2.1a)= + *d ~ci

I where the subscript denotes the derivative with respect to cl, and

m T

• _dk, ''', _dNE Q_d = (_d I' "'' ) (4.4.2.Ib)

I
Substituting Eq. (4.2.29) in Eq. (4.4.2.1b), the explicit equation

I

I

I
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i - I, ..., n (4.4.2.2)

is obtained. Usually, in the direct method, the above equation is

evaluated for each random variable ci, involving 'n' solutions of the

linear equation (4.4.2.2). In the adJo£nt method, k is selected to

satisfy

K k - Sd (4.4.2.3)

Then, Eq. (4.4.2.2) can be rewritten as

I [,it i - *ci + _¢ _ci
i m _, .0., n (4.4.2.4)

I
I
I
I

I

I

The adJoint problem, Eq. (4.4.2.3), is solved only once in this

method. In the direct method, 'n' solutions of Eq. (4.2.29) are

required. This is the advantage of the adjoint method over the direct

!

method. Both methods require 'n' inner products with £ in Eqs.
_c i '

(4.4.2.1) and (4.4.2.4), respectively. However, it has been shown that

when the number of functions _ is more than the number of random

variables, the computational advantage of the adjoint method is lost

[33,34]. By solving 'n' adjoint problems, the second order sensitivites

can also be evaluated [33,34]. It should be noted that the adjoint

method is applicable to nonlinear problems as well, as the first and

I second order equations are still linear.

I

I

I



I

I
I
I

103

4.4.3 Displacement Derivatives in PFEM

In mechanics, one is often interested in the response in only a

portion of the entire domain. Stress concentrations, plastic flow and

strain localization effects are some examples. Similarly, in

I
probabilistic analysis, one is interested in the probability of failure,

which usually initiates in a small domain. This translates into a few

I
I
I

I

nodal displacements and element strains and stresses. In such cases,

the adjolnt methodology can be used to reduce the computations in PFEM

equations for the evaluation of derivatives.

The adJolnt method can be used to calculate the displacement

derivatives of the k th component of the displacement vector _, denoted

by d (k)."- This is done by substituting

I _ - d (k) (4.4.3.1)

I in Eq. (4.4.2.4). Thus,

I [d(k)] = d(k) + _T f'

ci ci ~c I

I

I

I

where I is obtained from the adjoint problem

(4.4.3.2)

_ - d_ k) . (4.4.3.3)

I Interestingly, the right hand side of Eq. (4.4.3.3) is a Boolean vector,

with unit value at the kth component. _lerefore, the adjoinC problem

I

I

I
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for displacement derivatives can be interpreted as a linear structural

problem with the same tangent stiffness and a unit load at the kth

position of the external force vector. The displacement covarlance is

then obtained from Eq. (4.2.39), where the derivatives are with respect

to c and the covariance matrix is replaced by the diagonal variance

matrix (Eq. (4.4.1.6)).

._,,
In the direct method, the second-order term d in Eq. (4.2.41) is

obtained by a singlesolution, irrespective of the number of random

variables c i. This is because of the summation of the second-order

displacement derivatives in Eq. (4.2.39).

In comparison, the adJoint method may require more computations to

compute the second-order term d. This term requires the first

derivatives of the displacements, over the entire domain. In such a

scenario, the adJoint problem (cf. Eq. (4.4.3.3) has to be solved for

each component of the displacement vector d, resulting in more

computations. If the size of the vector d is small when compared with

the number of random variables c i, the adjoint method will require fewer

computations than the direct method. Thus, the selection of the adjoint

method over the direct method depends on (i) the number of displacement

components considered, (ii) the number of random variables ci, i = 1,

..., n and (iii) the size of the displacement vector d.

It is to be noted that the adjolnt problem is always linear,

irrespective of the primary problem. It has been noticed that the

second-order term contributes very little to the mean displacement

calculations [24-26]. If the second-order term is neglected, then the

!
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adjoint method for the first-order mean and covariance would involve

solutions of only two equations vlz., Eqs. (4.2.29) and (4.4.3.3) and

!

'n' inner products with f in Eq. (4.4.3.2). The adjolnt PFEM method

for displacements is applicable to linear and nonlinear materials, with

the use of stiffness and tangent stiffness matrices, respectively. The

first order mean and covariance of displacements d(k), k = I, ..., N

where N is the number of displacements of interest, are

Z[d(k)] = dO(k) k=l, ..., N (4.4.3.4a)

q [d(k) [d(_)
Cov(d(k),d (£)) " { E ]c ]c Var(Cr)}

r_l r r

(4.4.3.4b)

4.4.4 Stress Derivatives in PFEM

The first derivative of the stresses with respect to the

probabilistic variables, in any element, can be expressed in terms of

the displacement derivatives in this element which are first calculated

by the adJolnt method. For a four node, 2D continuum element this

requires the solution of eight adjoint problems. For linear materials,

the stress derivatives with respect to the transformed vector c, in a

given element are:

' lJd=_ B° do dO

= C + C°B (4.4.4.1a)
£ci ~ci~ ~ ~ ~ci~

resulting in

i



I

I
I

I
I

I
I

I
I

I

I

I
I

I
I
I

I
I

' cOBOd '

= _ci I d"d° +[£1 c i ~ ~ ~c I

106

(4.4.4.1b)

In the absence of random material properties, the first term in Eq.

(4.4.4.1b) drops out and in the absence of random geometric properties,

the second term drops out. In the case where only loads are random,

both terms drop out.

For nonlinear materials, Eq. (4.4.4.1a) cannot be easily

evaluated. One strategy is to replace these derivatives by their

flnlte-dlfference counterparts [24]

' I

ECiid=_O = _i (E°+-_°-)Id=dO
(4.4.4.2a)

with the definitions

o+ £(o- + A_i ) (4.4.4.2b)

O-- 0
= _(c - A c i) (4.4.4.2c)

and

A_i = (o, ..., Ac i, ..., o) z . (4.4.4.2d)

The derivatives of the tangent constitutive matrix in Eqs. (4.3.16b) can

also be approximated similarly. For a general nonlinear material, Eqs.

(4.4.4.2b) and (4.4.4.2c) have to be evaluated by solution of the zeroth

!
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order equation, with the appropriate values of c. However, for

elastoplastic materials with random material properties, these

quantities can be evaluated in the course of the zeroth order solution

by the radial return algorithm [36]. Additional arrays to store the

I stresses in Eqs. (4.4.4.2) are all that is needed to achieve this.

Essentially, the functional relationships

I o+ = _(57' o
_t+_t _dt' Act )

!
(4.4.4.3a)

I
and

I
O-- O-- 0

_t+At = _(_t ' _dt' Act)
(4.4.4.3b)

I

I

hold, for each ci [37]. The subscripts 't' and 't+_t' refer to two

successive time steps, in the evolution of the stress history. The

first order ,_an stress and covariance of stress are expressed as

I
I

I

I

and

0

E[_] - 5 (4.4.4.4a)

Coy( i aJ) { q i ' '= E [_ ]r[OJ]r Var(Cr) }
r=l

(4.4.4.4b)

I

I

i _Jwhere u and are any two components of the elemental stress

vector u.

I

I
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4.5 Applications

The usefulness of PFEM is demonstrated here by three

applications. In the first two cases, the problem studied is an

elastic-plastlc plane continuum with a circular hole. In the first

application (Fig. 2), the unlaxlal yield stress and the uniform

compressive load are assumed to be two independent stationary random

fields, with an exponentially decaying correlation function. The load

is dlscretlzed into 12 components, applied at the nodes, both for

deterministic and random analyses. The yield stress is assumed to be

radially correlated in an exponential manner (Fig. 2). The domain of

the plate is divided into 15 rlng-like bands and in these bands the mean

yield stress is assumed constant in time and space. This results in 15

dlscretlzed random variables for the yield stress. The load is quasi-

static and linearly increasing with time, with 8 load steps. The

displacement and stress statistics are studied in each of these load

steps.

The mean and variance of the compressive stress at load step 8,

along the x-axis, are plotted in Figs. 3a and 3b, respectively. The

elements near the hole are plastic at this load, as can be seen from

Fig. 3a. The variance of the stress is maximum, therefore, near the

hole and this is seen in Fig. 3b. These results compare very well with

the Monte Carlo simulation (MCS) results. The coefficient of variance

is 10Z for the stress. The mean and variance of the stress near the

hole (Point B) are plotted in Figs. 4a and 4b, respectively. The mean

stress is plastic after the second load step. Thereafter, the mean

!



I
I

I
I

i
I

I
I

I
I

I
I

I
I
I

I
I

I

109

stress is almost constant and is equal to the uniaxial yield stress

value, except for a slight hardening effect. The variance of stress

rises rapidly when the yielding occurs (i.e., elastoplastic state of

stress) and thereafter it rises gradually. The maximum coefficient of

variation for the stress at Point B is 10%. The stress correlation

along the x-axls, w.r.t, the stress at Point C, is plotted in Fig. 4c.

Interestingly, the correlation is almost zero near the hole and there is

inverse correlation near the fixed end of the plate (cf. Fig. 2). This

suggests that the stresses in the plastic state are not correlated with

the stress near Point C. This can be explained by the fact that beyond

yielding the stress remains practically constant for this material

because E/E T - i00. Near the fixed end, the stress is almost zero and

the negative correlation implies that this stress will statistically

increase when the stress near point C decreases. By studying the

effects of the two random fields separately, it is noticed that the

random load effect in terms of the variance, is spread wider over the

elements along the x-axis than the random material effect, and the

effect is mainly near the hole. As is to be expected, the variance of

the stress under the combined effect of the random material and random

load is additive. Similarly, for the _ean values of stress, the second

order effect is additive.

The second example concerns the cyclic loading of the same plate

with only the yield stress as the random field. Mechanical and

aerospace components are usually subjected to thousands of cycles of

stress, resulting in fatigue. The material properties usually show some

!
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degradation with time in these components. A modest attempt is made

here to see if there is a large variation of the response statistics

after 3 cycles of loading and unloading. The mean and variance of the

displacement at node A is plotted as functions of the load step in Fig.

5a. The mean displacement is sinusoidal, resembling closely the forclng

function. The variance of the displacement is zero until the plate

begins to yield in compression. After this, the variance jumps to a

higher value and remains steady until the yielding in tension begins.

At this point, there is a sharp drop in the displacement variance and

after that the variance stays at a constant level. This phenomenon

repeats every cycle. There seems to be a gradual buildup of the value

of the displacement variance during every cycle, particularly under

compression. The maximum coefficient of variation in these cycles is

2%.

The mean and variance of the stress at Point B are plotted in Fig.

5b. The mean stress is periodic, with a slight flattening at the top

and bottom. This flat region corresponds to the plate yielding, in the

mean sense. The variance of stress at Point B is periodic, and behaves

similar to the displacement variance. The coefficient of variation is

I0%.

The stress variance exhibits spikes whenever yielding is about to

commence. The variance drops to a near zero level in these downward

spikes. This phenomenon can be explained from the elastic-plastic

behavior of the plate under stress reversal. To do this, three

deterministic solutions of the stress in the plate are shown in Figs. 6a

I
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and 6b at various loadsteps, under cyclic loading. These correspond to

yield stress (Oy) values of 26,000, 25,000 and 24,000 psi, respectively.

During the first yielding, in compression, the magnitude of the stress

for o = 26,000 is maximum and this stress plot, in Fig. 6a, lies
Y

outermost. Before the next yielding in tension commences, there is a

crossover of the three curves. This crossover is necessary because the

magnitude of the stress at yield, for the highest yield stress value, is

always the highest. The crossover repeats twice for each cycle of

loading. This translates into a very small variance of stress near the

crossover regions because the variation of stress w.r.t, the yield

stress is near zero. The spikes in the displacement variance can also

be explained similarly.

The third application studied is a turbine blade with random load

along the edge, random yield stress and random length of the blade. The

problem statement, along with the details of the random fields, are

given in Fig. 7. The load is quasi-static and linearly increasing, with

15 load steps. The expectation and deviation of the displacement are

plotted in Fig. 8a; the coefficient of variation is plotted in Fig.

8b. It is noticed that the first two steps are elastic and beyond that

the blade starts yielding. Due to this yielding, the expectation is

nearly flat beyond the second load step. In the elastic region, the

maximum contribution for the deviation comes from the random load

followed by the random length. In the elastoplastic region and beyond,

the random yield stress affects the deviation most. The combined

deviation has a maximum coefficient of variation of 13% and this occurs
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just after the initiation of the yielding.

The stress statistics are plotted in Figs. 9a and 9b. The stress

deviation is largely due to the random load in the elastic region, as in

the case of displacement deviation; the effect of the random length is

very small in both the elastic and plastic regions; the random yield

stress causes the most deviation in the plastic region. The maximum

coefficient of variation is 8%, at the last load step.
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4.6 Conclusions

The PFEM techniques for linear and nonlinear materials, including

elastoplastic materials, yield efficient and reliable statistics of the

response quantities of interest. The direct solution of PFEM equations

may require a substantial number of computations for large systems. By

making use of features such as the eigenvalue orthogonallzation and

selection of only a few highest eigenvalues, the adjoint methodology,

and superposition of random fields, these computations can be

drastically reduced. The results obtained here show that the first and

second order variances in response which are obtained by this form of

the moment method agree well with Monte Carlo simulations when material

properties such as the yield stress are random variables. The results

also seem to suggest an increase in the response variance even with a

small but steady degradation of material properties after several

cycles. However, this needs to be investigated further. As discussed

in the introduction, based on the response statistics, reliability

measures can be calculated. In addition, the response gradients with

respect to the random variables are calculated in the course of PFL_

calculations. These are also useful in reliability calculations and

probabilistic design.
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CHAPTER 5

APPLICATIONS OF PROBABILISTIC FINITE ELEMENT METHODS

IN ELASTIC/PLASTIC DYNAMICS

5.1 Introduction

Design methods for engineering problems are, in general, based on

deteruKnlstlc parameters. In prac=ice there are often uncertainties

associated with parameters such as: material and geometric properties,

forces, and boundary conditions. Although, in most situations the

uncertainties may be small, the combination of these can lead to large

and unexpected excursions of the response, particularly in multi-

component systems. In the context of failure and reliability analysis,

this phenomenon is of obvious significance. In the past, problems with

uncertainties have been studied to provide an insight of the statistical

response variations, with methods llke sampling [1-4], numerical

integration [5,6], second-moment analysis [6,8] and stochastic finite

element methods [6,9-12]. The choice of the appropriate method depends

on the nature of the problem and this was briefly discussed by the

authors in Refs. [12,13]. Typically, the uncertainties are modelled as

random quantities governed by probability density functions, and that is

also the case here.

A survey of the existing literature shows that, with the exception

of the methods based on sampling, the other methods are limited to

linear problems. Moreoever, techniques for handling random fields,

where the randomness is spaced over the continua, are even scarcer. The

authors have recently extended probabillstlc finite element methods PFEM

[13] to linear and nonllnear continua in both static and transient
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set tings.

A schematic of the PFEM is presented in Fig. la.
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In the PFEM [13],

the random fields, characterized by the mean, variance and

autocorrelatlon functions, are discretized to obtain the mean vector and

the covarlance matrix. For a correlated random field, the covarlance

matrix will be a full matrix and therefore it will require too many

computations. To remedy this, the correlated vector is transformed to

an uncorrelated vector by an elgenvalue orthogonallzation procedure

resulting in a diagonal covarlance matrix, and therefore, fewer

computations. This transformation procedure gives rise to a set of

modes and corresponding elgenvalues. It is shown that only a few of

these modes are sufficient to obtain a converged PFEM solution.

Finally, the PFEM involves solutlon of a set of deterministic FEM

equations to obtain the mean, variance and autocorrelatlon of the

response.

In this paper, two applications of the PFKM in elastlc/plastlc

dynamics with random material properties are studied in detail. The

dlscretlzatlon of the random field depends on factors such as the

inhomogenelty of the randomness and the extent of the spatial

correlation. The necessary guidelines for the discretlzatlon are

discussed in the next section. In Section 5.3, the choice of the number

of modes necessary for a converged PFEM solution is discussed. The

computational efficiency and accuracy of this method are compared with

those of Monte Carlo simulation with a first-order filter [6,7] in

Section 5.4, along with the conclusions.

I



I

I

I

5.2 Random Field Discretization

Let b(x) represent the random field.
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In PFEM, b(x) is approximated

by discretization as

q

I b(x) = iF-=l Ni(x)b i
(5.2.1)

I

I

I

where Ni(_) represent the shape functions and bi the discretized values

of b(_) at xi, i = I, ..., q. It follows from Eq. (5.2.1) that

q

db(x)~ = Z Si(x)dbi~
i=l

(5.2.2)

I db2(x) = q Ni(x)N j(x)dbidb j
i,J=l

I where

(5.2.3)

I

I
I

dbi = bi - _i (5.2.4)

and_ i represent the mean values of bi (also denoted by the expectation

operator E[.]). From Eq. (2.1) the expectation and the covarlance of

I

I

b(x) are, by definition,

E[b(x)] = f b(x)f(b)db (5.2.s)

I q

= Z

i=l
Ni(x)E[b i ]

(5.2.6)

I

I

I
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and

!
I Cov(b(Xk),b(x )) = _'_ (b(x k) - "b'(x. ))(b(x )-b'(x ))f(b)db,,,k ~j_ ~J_ ,,, ,-,
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(5.2.7)

m q= Z

i,J=l
Ni(xk)$ j (x&)Cov(b i ,bj )

(5.2.s)

I

I
where f(_) is the multivariate probabillty density function; _k and _

are any two points in the domain of x.

From second-moment analysis [6,8], the mean of any function

I S(b(x),_) at any point xk, and the covarlance of the function between

any two points x k and x can be written as

i,J=l _bl3bj|
(5.2.9)

(5.2.10)

I where

I
I
I

I

Sk = S(b(x),xk) (5.2.11)

and the superposed bar implies evaluation at _. The error in Eqs.

(5.2.9) and (5.2.10) arises from: (i) the truncation of higher order

moments and (2) the dlscretization of the random field b(x) by the

I

I
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finite vector b. If the randomness in b(x) is small, then the first

error will be small for a smooth function and the second-moment analyis

is applicable. The error due to discretlzatlon in Eqs. (5.2.6) and

(5.2.8) can first be studied to provide an insight of the discretization

accuracy,

The discretization error of the covarlance field is defined by the

L 2 norm

E2 . f [C°VECb(_k),b(_g)) - COVD(b(Xk),b(5£))]2dG (5.2.12)

where Cov E and Coy D represent the exact and discretized covariances.

The exact covariance is calculated from the given function for the mean

E[b], coefficient of variation a and the autocorrelation R as follows:

COVE(b(xk),b(xz)) = [Var(b(Sk))Var(b(_£))]I/2R(b(_k),b(5£))
(5.2.13)

where

Var(b(_k)) = (a(b(_k))Z[b(_k)]) 2 (5.2.14)

The discretized covariance between any two points _k and x

from:

is obtained

COVD(b(Xk),b(5£)) =

q

Z

i,J =I
Ni(Xk)N j (x£)Cov(b i ,bj )

(5.2.t5)
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Cov(b i,bj) ffi[Var(bi)Var(b j )]I/2R(b i ,bj )
(5.2.16)

where bi are the discretized points of b(_), corresponding to _i' i = I,

..., q. For a beam with a random field along the x-axis (Fig. Ib), the

logarithmic plot of E against q is given in Fig. 2a, and the rate of

convergence is found to be 1.325 for nearly all q between 4 and 64.

When the random field discretization is coupled with an FEM

discretization, as in PFEM [13], q need not be equal to the number of

finite elements NUMEL and the shape functions Ni(_) need not be the same

as the finite element interpolants for the displacement field.
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5.3 Transformation Procedure for Computational Efficiency

The mean and covariance can be obtained from Eqs. (5.2.11) and

(5.2.12). However, the number of derivatives to be evaluated is

proportional to q(q+l)/2. This arises from the double summations in i

and J. To reduce the number of computations, the full covariance matrix

Cov(bi,b j) is transformed to a diagonal variance matrix Var(ci,c j) such

that

Var(ci,c j) " 0 for i # J (5.3.1)

and

Var(cl,c j) = Var(c i) for i - J
(5.3.2)

Therefore, the number of derivative evaluations is proportional to q.

The above is achieved through the eigenproblem:

- _ (5.3.3)

where the G and _ matrices denote Cov(bl,b j) and Var(cl,cj) ,

respectively; _ is a constant q x q fundamental matrix with the

following properties:

T T
$_-_ -i (5.3.4)

I
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. T_ (5.3.5)

I and

I b -_ or =-_Tb (5.3.6)

I
I

I
I

I

I is the q x q identity matrix and c is the transformed q x I vector of

random variables.

With Eqs. (5.3.5) and (5.3.6), the mixed derivatives appearing in

Eq. (5.2.11) reduce to second derivatives and Cov(bi,b j) reduces to

Var(ci):

- __
E[S] = S +_" _ Var(cl)

i=l ac i

(5.3.7)

I and

i=l

I
I

I
I

(5.3.8)

Thus, the discretized random vector b is transformed to an uncorrelated
N

random vector _, with the variance of ~c as the eigenvalues of G_ in Eq.

(5.3,3),

In the numerical examples, an exponentially decaying

autocorrelation in one-dimension is assumed with various correlation

lengths 'X' (i.e., the length at which the autocorrelation drops to

I 0.37, see Fig. lb). It is observed that for one-dimensional random

I

I
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fields, as X increases from zero to a large value, the number of largest

eigenvalues N, N 4 q necessary to evaluate the mean and covariance in

Eqs. (5.3.7) and (5.3.8) to a specified accuracy, decreases from q to

I. When I is zero the random field is uncorrelated and all q

elgenvalues are dominant. When the field is uncorrelated, all q random

variables are necessary to represent the randomness of the field.

As I increases the number of dominant elgenvalues decreases.

Eventually, for a very large _ the random field is closely correlated

and there is Just one dominant elgenvalue. When the field is closely

correlated, only one random variable, corresponding to the largest

eigenvalue, is sufficient to represent the randomness of the field.

This feature, when present, can easily be exploited to reduce the

number of computations. The value of N can be chosen based on the

distribution of the eigenvalues before solving the PFEM equations. The

eigenvalues here can be interpreted as weighting factors for the

correspondin E mode shapes necessary to represent the covariance

structure; a large eigenvalue means a dominant mode and vice versa. The

eigenvalue distribution and the mode shapes are depicted in Figs. 2b, 3a

and 3b, for a numerical example. Results of the eigenvalue distribution

and selection of N, for a beam problem and a bar problem, are discussed

in the next section.
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5.4 Results and Discussion

(I) Elastic/Plastic Beam with Yield Stress as a Random Field
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The problem statement is depicted in Fig. lb. The yield stress is

assumed to be a function of the position along the length of the beam

only. The Gaussian random field, which is the yield stress, is

dlscretized so that q - 16 (NUMEL - 64). 4-node continuum elements are

employed. The coefficient of variation of the yield stress is assumed

to be 0.I0. The static response, as a function of the loading, is

calculated by an implicit algorithm.

The mean displacement, the variance of the displacement, the meah

bending stress and the variance of the bending stress are shown in Figs.

4a to 4d. The coefficient of variation of the displacement at the free

end is found to be 0.069 and that of the stress at the fixed end is

0.087. The results are compared with those of a Monte Carlo simulation

with 400 realizations and they are in excellent agreement.

The convergence of the random field dlscretlzation error, as

defined in Eq. (5.2.13), is plotted in Fig. 2a. The rate of convergence

is found to be 1.325. The eigenvalues of the covariance matrix are

plotted in Fig. 2b. Based on the distribution, 4 out of the 16 largest

eigenvalues were chosen. The mode-shapes, corresponding to these 4

largest and 4 smallest elgenvalues, are shown in Figs. 3a and 3b,

respectively. The latter, clearly, play no role in representing a

smooth autocorrelation, as is assumed here; if the field is highly

uncorrelated these modes will be necessary. This resulted in a 95Z

accuracy in the variance of the stress at the wall (Fig. 2d).
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The exact autocorrelation and the discretized autocorrelation for

the Monte Carlo simulation of 400 realizations are compared in Fig. 2c;

the autocorrelation is along the length of the beam, w.r.t, the yield

stress at the wall. This amply demonstrates that this sample size would

be sufficient to bring out the response correlation characteristics, and

that the flrst-order filter captures the correlation characteristics

quite well.

The spatial autocorrelatlon of the displacements at two different

loads, along the length of the beam, are depicted in Figs. 5a and 5b.

The spatial autocorrelation of the stresses along the length of the

beam, at these loads, are depicted in Figs. 5c and 5d. The displacement

autocorrelatlon is w.r.t, the free end displacement and the stress

autocorrelatlon is w.r.t, the wall stress. In the first loading, 4

element layers (16 elements) near the fixed end are yielded and in the

second loading I0 element layers (64 elements) are yielded. The

displacements along the length of the beam show almost complete

correlation with one another, irrespective of the correlation

characteristics of the yield stress. The stresses, because of their

direct dependence on the material properties, exhibit a varying

autocorrelation along the length of the beam just llke the random yield

stress. Interestingly, the results of stress autocorrelation by PFEM

and MCS are smooth and in good agreement in those elements that have

yielded (in the mean sense) (Figs. 5c and 5d). In other elements the

results show disagreement and oscillatlons in both PFEM and MCS

results. In many of these elements, the mean stress is well below the
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mean yield stress and so the randomness of the yield stress has a very

insignificant effect on the stress values, as measured by the stress

variances. Figs. 5c and 5d show that the stresses in the unyielded

portion of the beam are highly uncorrelated to those in the yielded

position. It is interesting to note that although the material law is

highly nonlinear, the second order moment method which underlies PFEM

agrees very well with Monte Carlo simulations.

(2) Elastic/Plastic Bar with Plastic Modulus as a Random Field

The problem statement is depicted in Fig. 6a. The plastic modulus

is assumed to be a Gausslan random field along the length of the

bar. The material is assumed to be elastlc-plastlc with Isotroplc

hardening. As can be seen from Fig. 6a, the yield stress is spatially a

linear function for the mean and an exponential function for the

autocorrelatlon. The coefficient of variation is assumed to be 0.I0 and

the random field is discretized so that q = NUMEL - 32. The

probabillstlc equations are solved by the explicit predictor algorithm

[12] with a slight numerical damping (y - 0.55). A near-crltical time

step (At - 0.000455) is used to keep the number of time steps minimal,

subject to the stability conditions.

The mean and the variance of the displacement at the free end are

shown in Figs. 6b and 6c. The coefficient of variation of the

displacement atthe free end is found to be ~0.05. The results are

compared with those of a Monte Carlo simulation with 400 realizations

and they are in excellent agreement. For both examples, the PFEM needed
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much less computer time than the MCS. Also, only the largest 8 of the

32 eigenvalues are found to be sufficient to predict the displacement

mean and covariance with a 99% accuracy.

In second moment PFEM, the superposition of the covariances of the

response for two different, uncorrelated (to each other) random fields

in a structure is the same as when both the random fields are present

simultaneously. For example, the results of a bar with only the yield

stress as the random field and those of the bar with only the plastic

modulus as the random field can be superposed. The summed results will

be the same as that of the bar with both the random fields present.

When 'N' random fields are present, they are divided into 'n' groups (n

< N) such that the fields within a group are correlated to one another

and uncorrelated to those in the other groups. The PFEM results for

each of these groups can then be simply summed, as in the case of 2

uncorrelated random fields. This is, of course, not possible in

simulation where the entire calculations have to be repeated. For the

purpose of probabillstlc analysis in multi-component systems, this is an

added advantage of PFEM over the simulation methods.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The theme of this study was to develop and apply efficient

probabilistic finite element methods for various classes of problems in

structural and solid mechanics. In nonlinear problems the main issue

addressed was the evaluation of the higher order derivatives of the

stresses and the internal nodal forces with respect to the random

variables (Chapter 2). It was shown that finite-differencing was a

fairly accurate way of approximating these derivatives. Applications in

truss structures were studied and the results agree with those of Monte

Carlo simulation and Hermite-Caussian quadrature. It was also

discovered that the higher-order equations involve secular terms which

caused the solutions to deteriorate with time. Damping did not mitigate

the problem and other remedies were suggested to eliminate secular

terms. Secular terms, however, do not arise when only the external

forces are random. The spatial discretization procedure of the random

field resulting in the mean vector and the covariance matrix was

outlined in Chapter 3, along with a simple check on the discretization

accuracy. The popular eigenvalue transformation technique to obtain a

vector of uncorrelated variables has also been implemented in PFEM.

This reduced the computations from a quadratic to a linear dependence on

the number of random variables. Furthermore, it was observed that a

reduced set of the uncorrelated variables was sufficient to model the

randomness. Each variable represented a mode of correlation and

depending on the strength of correlation adequate number of modes had to

142
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be included. In general, the higher the correlation the lesser was the

number of modes that were required. The eigenvalues of the

transformation were weighting factors in the superposition of modes.

Whereas in Chapters 2 and 3 the PFEM equations were derived from the

equations of motion, it was demonstrated in Chapter 4 that they can be

quite as easily derived from variational principles. For linear

continua, the equations were derived from the potential energy

varlatlonal principle and for nonlinear continua undergoing large

deformation the corresponding equations were derived from the principle

of virtual work with appropriate stress and strain measures. Also, for

elastoplastic materials, a direct method of evaluating the stress

derivatives was outlined. An important advantage in deriving the PFEM

equations from varlational principles is the ease of incorporating the

random geometry.

Various applications were studied in truss structures, bar, beams

and plates and the results compare favorably with those of Monte Carlo

simulation. It was noticed that the second order terms have negligible

contribution to the mean response. It was also noticed that the

strength of correlation did not affect the magnitude of the response

moments appreciably. However, this may not be the case when the

structural reliability has to be calculated. With the use of adjolnt

method it was demonstrated that the response moments can be selectively

computed in a desired portion of the structure. Some applications in

elastlc-plastlc dynamics were studied in detail in Chapter 5. Most

uncertainties seem to linearly affect the response (i.e., a 10% c.o.v.
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of a random property gives to not more than 10% c.o.v, of the

displacement or stress). It was also noticed the displacements in any

structure were always perfectly correlated regardless of the correlation

level among the random variables. This was not the case for stresses,

however. Unlike stress, which can exhibit sudden variation in a

structure as in stress concentration, the displacement field in a

structure is a smooth function by nature. Alternatively, from the

finite element context, the external force is obtained by integrating

the stresses over the domain and then the displacements are obtained.

This integration process results in a smooth displacement field.

Based on the work in this research, the following suggestions are

made for further work:

1. Methodologies for modeling mixed random boundary conditions, with

PFEM. Direchlet and Neumann boundary conditions, with random

magnitudes, can be easily incorporated in PFEM as random external

forces. However, mixed boundary conditions are not so easily

modeled. Example: A beam may not be fully clamped or fixed.

2. Second-moment based reliability techniques are available for mostly

linear systems. The major issue in nonlinear systems is the

computation of the response gradients. By incorporating some of the

techniques outlined in this report, this computation may be done,

accurately and efficiently. In limited situations, the response

moments themselves may be used to calculate reliability.

3. As PFEM involves solution of a set of independent first-order

equations, in addition to the zeroth and the second-order equations,
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the first order equations can be processed in parallel. The

solution sequence would be: solution of the zeroth-order equation

first, parallel solution of the flrst-order equations next and

finally the solution of a single second-order equation. In solving

the higher order equatlonsj the already decomposed stiffness matrix

can be made use of.
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APPENDIX A: REVIEW OF MONTE CARLO SIMULATION HETHODS

AND I"IERMITE-GAUSS QUADRATURE SCHEMES

A.I Monte Carlo Simulation Methods

Various Monte Carlo Simulation techniques are now available. In

our analysis, the "simple" Monte Carlo method is used. The important

feature about the Monte Carlo method is its flexibility. In other

words, the computational procedures are the same irrespective of whether

the model is linear or nonlinear so long as the solution can be obtained

from the governing equation.

The main idea behind Monte Carlo simulation methods is to randomly

generate values of the random variables subject to the probability

density function and to calculate the output corresponding to these

values. From this set of output, the probabilistic distribution

properties, such as the mean and variance, are statistically estimated.

In the analysis of the two degrees of freedom probabills_ic system,

a normal random generatorls used. This normal random number generator,

RANF, is available on the Northwestern University CDC system. It has

been well tested and for large sample size, the distribution is close to

normal. This "closeness" can also be estimated by the so called Central

Limit Theorem, which states as follows: "if a population has a finite

2
variance u and mean value _, then the distribution of the sample mean

approaches the normal distribution with variance u2/n and mean _ as the

sample size n increases." The sample size used in this analysis is

400. Both the spring constants K 1 and K 2 are randomly generated and the

corresponding displacement solutions are calculated using the exact
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A.2 Implicit Time Integration with Hermite Gauss _uadrature Scheme

Let us consider a linear two degrees of freedom probabllistic

system

M a + K d = F
~ ~n+l ~ ~n+l ~n+l

(A.2.1)

where

M= ; K= ; F=

~ 0 m2 ~ -K2 _ Z(t)

(A.2.2)

n is the time step number and the initial conditions do , v_o and a_o are

given. At each time step n, Eq. (A. 1) is solved by the Newmark-8

algorithm with 8 = 0.25, T = 0.5 and At = 0.02 Tmi n where Tmi n is the

smallest fundamental period. The finite difference matrix equation can

be shown to be

Keff_n+i. ,elf (A.2.3)

where

I
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I

Keff - M + 8At 2 K

Feff . SAt2 _n+l + ~M _n+1

- d + At v + (_ 8) At 2-- a
n+l --n --n ~n
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(A.2.4)

(A.2.5)

(A.2.6)

I and

I = v + At (i V) ~nU+l ~n - a
(A.2.7)

I

I

I

I

Once _n+l is determined from Eq. (A.2.3), i.e.,

dn+1 = (Kerr)-I Feff

an+ 1 and Zn+l can be determined as follows

2
an+ I - (an+I - _n+1)/sAt

(A.2.8)

(A.2.9)

I and

I Zn+l " _n+1 + vat _n+t (A.2. I0)

I
The solution procedures are then repeated with n replaced by n + I

I

I

until n_t greater or equal to a desired time. Since K I and _ are

random variables, therefore, _n+l by Eq. (A.8) is "implicitly" a

I

I
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function of K I and K 2. Using the basic definitions of mean and

variance, the expected value of _n+l is
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f+mI ..c..o+_1-?
I

I
I

_n+[(Kl , K2) fKI(K I) fK2(K 2) dK I dK 2
(A.2.11)

where fKI(K I) and fK2(K 2) are the probability density functions for

K I and K 2 respectively. In writing Eq. (A.2.11), the assumption that

K I is uncorrelated to K 2 has been employed. Once the expected value is

evaluated, the variance of d can then be computed according to
~n+l

I Var(_n+1)- Z[d2n÷1]- (E[dn+l])Z (A.2.12)

I

I
The Rermtte Gauss Quadrature scheme is to approximate the double

integrals which appears in Eq. (A.2.11) by

I

I
I
I

nl n2

i-I J-I

where nl and n2 are the number of integration points for K l and K2

respectively, wi and wj are their corresponding weights. As might be

figured from above equation, if the number of random variables is m, the

number of simulations N is

I N : nl * n2 * .... *nm (A.2.14)

l
and N grows exponentially. Therefore, unless the number of random

I

I

I
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variables is small, this method is not recommended. However, if a

physical situation dictates that some of the random variables can be

excluded in the calculations, N can then be reduced significantly.

Under this circumstance, the Rermite Gauss Quadrature Scheme can be an

efficient and accurate method. An example of this practical situation

has been demonstrated in Chapter 2, Section 4. In the analysis of the

ten-bar structure, it was predetermined that only four of the ten bars

will yield and the yield stresses are chosen as normal random variables.

If 3 points are used in evaluating each normally distributed K i in

Rq. (A.2.13), the weight and quadrature points are

w i - (116, 4/6, I/6) (A.2.15a)

and

Ki = (" - 3_ , . , _ + 3_) (A.2.15b)

respectively. And for this "bias" integration procedure, the number of

simulations required (for each time step n) is

N= 3" 3" 3" 3-81 (A.2.16a)

Nhereas, if one cannot observe apriori that six of the ten bars will not

yield, the number of simulations required becomes
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I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

N = 310 = 59049

which makes this a handicapped method.
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APPENDIX B: RESONANT EXCITATION OF RESPONSE SENSITIVITIES

The equation of motion and the sensitivity equation for a single-

degree-of-freedom sprlng-mass-damper system are

Mx+ C _+ Zx = F(t) (S.I)

_b+C_+Z_

where

F(t) aF aM " aC • aK- a-_- _-_x - _ = -_ x

M, C, K are assumed to be dependent on the parameter b; we are

interested in the sensitivity of the response x(t) to this parameter

b. Let F(t) be such that x(t) is stable. Under this condition it is

_x
shown below that the response sensitlvlty_ is resonantly excited.

The damped natural frequencies of the system Eq. (B.I) and the

sensitivity Eq. (B.2) are the same. The excitation F(t) involves

o.

x, x and x in Eq. (B.2) and is, therefore, a resonant excitation.

approximations for x(t), such as

_x
x(b o + Ab, t) = x (bo, t) + (_) + I (_2x)Ab _ -- Ab2

b-b _b 2 b=b
o o
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(B.2)

(B.3)

Thus

(B.4)

I
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at b for any small interval _b, are valid only for a short duration
o

and the accuracy deteriorates rapidly thereafter.

Since the PFEM equations (2.7) in Chapter 2 use the first and

second-order response sensitivities, they are valid for a short duration

only. A similar phenomenon is also observed in the transient response

of nonlinear structures. A posslble explanation for this phenomenon is

that the time 't' has a multiplying effect on the interval 'Ab' in the

second and third terms in Eq. (B.4) and this results in the

deteriorating accuracy. However, the PFEM equations developed in

Section 2 of Chapter 2 are suitable for application when one is

interested in a short-tlme history e.g. , the response due to an

impulsive load.
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APPENDIX C: NUMERICAL ALGORITHM FOR STRESS

AND DISPLACEMENT DERIVATIVES

For materials with random elastoplastic properties, such as yield

stress or plastic modulus, the finite-difference based derivatives (Eq.

(4.4.15b), Chapter 4) can be evaluated explicitly without recourse to

the solution of the equilibrium equation at each finite-differencing

point; the stiffness matrix, corresponding to the maan configuration of

the random properties, needs to be decomposed only once. This

configuration is represented by the vector c of size q. Subsequently,

the displacement derivatives can be calculated by forward reduction and

back substitution in Eq. (4.3.15a), Chapter 4. These computations are

done in conjunction with the radlal return method proposed in Ref. [I]

and as implemented in Ref. [2].

For each element integration point, for every equilibrium iteration

'u' in a given load step 'm', the following quantities are stored:

T : stress

= : center of the yon Mises yield surface

_: radius of the yleld surface

CT: tangent constitutive matrix

where the superposed "--" implies quantities evaluated at c.

FLOWCHART

Part I Radial return for mean stresses and diplacements

Begin loop on load steps, m

e

Begin loop on iterations, u
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I

I
a)

b)I
-'v+l "_'I =

tO obtain the elastic trial stress Ztrial: _trial F + &?

--v+l . _ ,--v+l v_
c) Compute: _trial = deviatoric part or [ztrial - _ )

Begin loop on elements

Begin loop on integration points

Pick up c--_,~ _,~ _'V, _T

Compute the elastic trial stress increment AT and update the stress

I d) Compute: _- 3Y 2 - (L) 2

_ -where is the second invariant of stress and _ is the yield

function.

e) If_ o 7 +I _+I' ~ " _trial; go to step h.

If _> 0, compute the plastic strain increment Ad-P:

Ad-'p = (3_2 -k'_)/(3G + B)

I

I

I

I

I

where G and B are the shear modulus and plastic modulus,

(C.l)

(c.2)

(C.3)

(C.4)

respectively. 'B' is further defined as:

EE T
B - -- (C.5)

E-E T

where E and ET are the elastic and tangent modull, respectively.

I
I

I
I

f)

g)

compute:

As = 3G A_P 3_2

as = (I - _)B a_3a 2

Correct stresses by radial return:

--v+l --_+I --v+l
" _trial - As _trial

--v+l -_ -.-._+i
= _ + As _t~ ~ rial

_+I=_ +_s_p

(C.6)

(c.7)

(c.8)

(c.9)

(c.io)

I

I

I



I

I
I

I
I

I
I

I
I
I

I
I

I
I
I

I
I

I

h)

163

Compute the tangent constitutive matrix _T and assemble the tangent

stiffness matrix

End loop on integration points

End loop on elements

End loop on iterations until equilibrium is satisfied. The

stresses, strains and displacements, _m+l' 5_+I and d n+l are

obtained from the final iteration•

Part II Displacement derivatives

The following quantities are also stored for each element

integration point, in a given load step m, for each 'i' representing a

random varlable ci:

+i -i

~mT , ~Tm : stresses, near the mean ~c

+i -i

_m ' _m : yield surface centers near the mean

k+i k-i" yield surface radii, near the mean _.
m' m"

+i c_iC T , : tangent constitutive matrices, near the mean c,

where

I



!

I
I

I,

+i -- i o)TC = C + (0, ..., AC , ...,

-i - i 0)TC _ C - (0, -.., AC , "'',
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(c.11)

(c.12)

and

ac i = Bc-'i , 0;01 < 8 < 0.05 (c.13)

!

!

Begin loop on 'i' for each random variable

Begin loop on elements

!

!

!

Begin loop on integration points

i) Compute the strain increment AT
_m

_s

(C.14)

I
I

I

ii)

iii)

iv)

+i +i k+i +i
Pick up ~rot ' _m ' m ' (_T)m

. +i .trial

Compute the elastic trial stress (_m+l)

Repeat steps (c) through (h) to finally obtain

+i +i +i +i

Z.+I' _+I' k-+1' (_T).+I

!

!
v) -i -i -i _iPick up _m ' _m ' km ' (_) and repeat steps (iii) and (iv) to

-i -i -i Ti)m+lalso obtain Zm+ I, _m+l' km+l' (C

!

!

!



I
I

I
I

I!
I

I
I

I
I

I
I
I

I
I
I

I

vi)

and

vii)

viii)
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Compute and store the first order finite-difference derivatives:

-- +i -i

_Im+l Im+l - !m+1

_c i 2Ac i

_c i 2Ac I

(C.15)

(c.16)

!

Compute and assemble the forcing term _i in Eq. (4.3.15b),

Chapter 4; note that

i

' _lm+l
(C. 17)

in the equation.

End loop on integration points

End loop on elements

Solve Eq. (4.3.15a), Chapter 4 to obtain the displacement

9_m+l
derivatives --and store.

_c i

Part III

ix)

Stress derivatives

Begin loop on elements

Begin loop on integration points

Compute stress derivatives as:

[L.,._lci - _ + &_ --_aC i

(c.18)

I



I

I
I

I
I

I
I

I
I
I

I
I
I

I
I

I
I

I
I

End loop on integration points

End loop on elements

End loop on random variables

End loop on load steps
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